DOI QR코드

DOI QR Code

Stiffness analysis according to support design variables in the metal additive manufacturing process

금속 적층제조에서의 서포트 설계변수에 따른 강성 분석

  • Received : 2023.12.06
  • Accepted : 2023.12.14
  • Published : 2023.12.31

Abstract

This paper delves into the crucial realm of support structures in metal additive manufacturing (AM) processes and their direct impact on the stiffness of printed components. With the continuous evolution of AM technologies, optimizing support structures has become imperative to enhance the overall quality and performance of manufactured metal parts. Therefore, in this study, tensile specimens were manufactured using various representative support design variables such as support type, spacing, and penetration depth, and the differences in displacement-load curve were analyzed though tensile test. Using additively manufactured support shaped tensile specimen, the paper presents a comprehensive examination of the effect of support parameters on their stiffness. The findings contribute to advancing the understanding how to design supports to suppress thermal deformation of metal parts during AM process, thereby paving the way for enhanced design freedom and functional performance in the ever-expanding field of AM.

적층제조 기술의 지속적 발전 및 적용 산업의 확대에 따라 제조된 금속 부품의 전반적인 품질 및 성능을 향상 시키기 위한 서포트 최적 설계 수행은 필수적이 되었다. 따라서 본 논문은 금속 적층제조 공정에서의 서포트 설계변수가 서포트 강성에 미치는 영향을 분석하였다. 대표적인 서포트 설계변수인 서포트 종류, 간격, 침투 깊이를 다양하게 적용한 인장시편을 적층제조를 통해 제작하고, 이에 대한 인장시험을 통해 변위-하중 곡선의 차이를 분석하였다. 그 결과를 바탕으로 서포트 설계변수가 지지 강성에 미치는 영향에 대한 포괄적인 분석을 제시하였다. 이를 통해 적층제조 공정 중 금속 부품의 열 변형을 억제하기 위한 서포트 최적설계 수행을 효과적으로 할 수 있을 것이라 기대된다.

Keywords

Acknowledgement

본 논문은 한국생산기술연구원 자체연구 무용접 일체형 초전도 고주파 공동 제조를 위한 요소 기술 개발(과제번호 UR230011)의 지원을 받아 수행된 연구 결과입니다.

References

  1. J. Smith, W. Xiong, W. Yan, S. Lin, P. Cheng, O.L. Kafka and W.K. Liu, "Linking process, structure, property, and performance for metal-based additive manufacturing: computational approaches with experimental support", Comput. Mech. 57 (2016) 583. 
  2. G. Allaire and B. Bogosel, "Optimizing supports for additive manufacturing", Struct. Multidiscipl. Optim. 58 (2018) 2493. 
  3. K.P. Lee, K.M. Kim, S.H. Kang, J.H. Han and K.H. Jung, "Optimization for high speed manufacturing of ti64 alloy by a selective laser melting technique", J. Korean Cryst. Growth Cryst. 28 (2018) 217. 
  4. P. Didier, G. Le Coz, G. Robin, P. Lohmuller, B. Piotrowski, A. Moufki and P. Laheurte, "Consideration of SLM additive manufacturing supports on the stability of flexible structures in finish milling", J. Manuf. Process. 62 (2021) 213. 
  5. L.D. Bobbio, S. Qin, A. Dunbar, P. Michaleris and A.M. Beese, "Characterization of the strength of support structures used in powder bed fusion additive manufacturing of Ti-6Al-4V", Addit. Manuf. 14 (2017) 60. 
  6. G. Strano, L. Hao, R.M. Everson and K.E. Evans, "A new approach to the design and optimisation of support structures in additive manufacturing", Int. J. Adv. Manuf. Technol. 66 (2013) 1247. 
  7. J.P. Jarvinen, V. Matilainen, X. Li, H. Piili, A. Salminen, I. Makela and O. Nyrhila, "Characterization of effect of support structures in laser additive manufacturing of stainless steel", Phys. Procedia. 56 (2014) 72. 
  8. P.N.J. Lindecke, H. Blunk, J.P. Wenzl, M. Moller and C. Emmelmann, "Optimization of support structures for the laser additive manufacturing of TiAl6V4 parts", Procedia CIRP 74 (2018) 53. 
  9. J. Jiang, X. Xu and J. Stringer, "Support structures for additive manufacturing: a review", J. Manuf. Mater. Process. 2 (2018) 64. 
  10. S. Weber, J. Montero, C. Petroll, T. Schafer, M. Bleckmann and K. Paetzold, "The fracture behavior and mechanical properties of a support structure for additive manufacturing of Ti-6Al-4V", Crystals. 10 (2020) 343.