Kim, Young-Kuk;Kang, Donghwa;Kim, Sung-Bin;Yoo, Bongyoung
Journal of Surface Science and Engineering
/
v.53
no.4
/
pp.138-143
/
2020
In this study, we produced a coil of micro-pattern that can be used for electromagnetic wave absorber, heating material, wireless charging, sensor, antenna, etc. by using electrochemical additive manufacturing method. Currently, it contains research contents for manufacturing a micro pattern coil having practicality through control of process control variables such as applied voltage, distance between electrode, and nozzle injection. Circulation of the electrolyte through the nozzle injection control can significantly contribute to improving the surface characteristics of the coil because of minimizing voltage fluctuations that may occur during the additive manufacturing process. In addition, by applying the pulse method in the application of voltage, the lamination characteristics of the plated body were improved, which showed that the formation of a fine line width plays an important role in the production of a micro pattern coil. By applying the pulse signal to the voltage application, the additive manufacturing characteristics of the produced product were improved, and it was shown that the formation of a fine line width plays an important role in the production of a micro pattern coil.
Yeong-Jin Woo;Dong-Ho Nam;Seok-Rok Lee;Eun-Ah Kim;Woo-Jin Lee;Dong-Yeol Yang;Ji-Hun Yu;Yong-Ho Park;Hak-Sung Lee
Archives of Metallurgy and Materials
/
v.66
no.3
/
pp.689-693
/
2021
In this study, we propose a cooling structure manufactured using a specialized three-dimensional (3D) printing design method. A cooling performance test system with complex geometry that used a thermoelectric module was manufactured using metal 3D printing. A test model was constructed by applying additive manufacturing simulation and computational fluid analysis techniques, and the correlation between each element and cooling efficiency was examined. In this study, the evaluation was conducted using a thermoelectric module base cooling efficiency measurement system. The contents were compared and analyzed by predicting the manufacturing possibility and cooling efficiency, through additive manufacturing simulation and computational fluid analysis techniques, respectively.
Lee, Bin;Kim, Dae-Kyeom;Kim, Young Il;Kim, Do Hoon;Son, Yong;Park, Kyoung-Tae;Kim, Taek-Soo
Journal of Powder Materials
/
v.27
no.6
/
pp.509-519
/
2020
A well-established characterization method is required in powder bed fusion (PBF) metal additive manufacturing, where metal powder is used. The characterization methods from the traditional powder metallurgy process are still being used. However, it is necessary to develop advanced methods of property evaluation with the advances in additive manufacturing technology. In this article, the characterization methods of powders for metal PBF are reviewed, and the recent research trends are introduced. Standardization status and specifications for metal powder for the PBF process which published by the ISO, ASTM, and MPIF are also covered. The establishment of powder characterization methods are expected to contribute to the metal powder industry and the advancement of additive manufacturing technology through the creation of related databases.
Journal of the Korean Society of Industry Convergence
/
v.23
no.2_1
/
pp.107-113
/
2020
Additive manufacturing(AM) can create complex shapes directly in 3D CAD models with internal geometry compared to conventional subtraction manufacturing. AM technology has the advantage of adopting various materials as well as the reduction of material. However, the high cost of AM is still a significant barrier preventing the wider adoption of AM in industries. This paper analyzes the technical application cases for solving these entry barriers and proposes a bi-metal 3D printing technology as an anticipated application to overcome the difficulty. The paper investigates the complications for current 3D metal printing technology to conduct bi-metal 3D printing and addresses ongoing solution research based on laser technology.
Metal additive manufacturing (AM) technologies are classified into two groups according to the consolidation mechanisms and densification degrees of the as-built parts. Densified parts are obtained via a single-step process such as powder bed fusion, directed energy deposition, and sheet lamination AM technologies. Conversely, green bodies are consolidated with the aid of binder phases in multi-step processes such as binder jetting and material extrusion AM. Green-body part shapes are sustained by binder phases, which are removed for the debinding process. Chemical and/or thermal debinding processes are usually devised to enhance debinding kinetics. The pathways to final densification of the green parts are sintering and/or molten metal infiltration. With respect to innovation types, the multi-step metal AM process allows conventional powder metallurgy manufacturing to be innovated continuously. Eliminating cost/time-consuming molds, enlarged 3D design freedom, and wide material selectivity create opportunities for the industrial adoption of multi-step AM technologies. In addition, knowledge of powders and powder metallurgy fuel advances of multi-step AM technologies. In the present study, multi-step AM technologies are briefly introduced from the viewpoint of the entire manufacturing lifecycle.
Journal of the Korean Society of Manufacturing Process Engineers
/
v.21
no.5
/
pp.1-8
/
2022
Fused deposition modeling (FDM), based on stacking a continuous filament of polymer or composite materials, is well matured and is thus widely used in additive manufacturing technology. To advance FDM-based 3D printing technology, the mechanical properties of additively manufactured composite materials must be improved. In this study, we proposed a novel FDM 3D printing process using metal wire-polymer composites, enabling enhanced mechanical properties. In addition, we developed a new type FDM filament of copper wire wrapped in nylon material for stable 3D printing without thermal damage during the printing process. After FDM printing of the copper wire-nylon composite filament, we conducted a tensile test to investigate the mechanical behavior of the printed composite materials. The experimental results confirmed that the tensile strength of the 3D-printed metal wire-polymer composites was higher than that of the conventional single polymer material. Thus, we expect that the FDM printing process developed in this study may be promising for high-load-bearing applications.
Kim, Min Soo;Kim, Ji-Yoon;Park, Eun Gyo;Kim, Tae Min;Cho, Jin Yoen;Kim, Jeong Ho
Journal of the Korean Society for Aeronautical & Space Sciences
/
v.50
no.4
/
pp.223-231
/
2022
Residual stress that can occur during the metal additive manufacturing process is an important factor that must be properly controlled for the precise production of metal parts through 3D printing. Therefore, in this study, the factors affecting these residual stresses were investigated using an experimental method. For the experiment, a specimen was manufactured through an additive manufacturing process, and the amount of deformation was measured by cutting it. By appropriately calibrating the measured data using methods such as curve fitting, it was possible to quantitatively analyze the effect of process parameters and metal powder reuse on deformation due to residual stress. From this result, it was confirmed that the factor that has the greatest influence on the magnitude of deformation due to residual stress in the metal additive manufacturing process is whether the metal powder is reused. In addition, it was confirmed that process parameters such as laser pattern and laser scan angle can also affect the deformation.
Metal AM(Additive Manufacturing) has been steadily developed and that is classified into two method. PBF(Powder Bed Fusion) deposited in the bed by the laser or electron beam as a heat source of the powder material and DED(Directed Energy Deposition) deposited by varied heat source of powder and solid filler material. In the developed countries has been applying high productivity process of solid filler metal based DED method to the aerospace and defense sectors. The price of the powder material is quite expensive compared to the solid filler metal. A study on DED method that is based on a solid filler metal is increasing significantly although was low accuracy and degree of freedom.
For tensile tests, Vickers hardness tests and microstructure tests, plate-type and box-type specimens of austenitic 316L stainless steels were produced by a conventional machining (CM) process as well as two additive manufacturing processes such as direct metal laser sintering (DMLS) and direct metal tooling (DMT). The specimens were irradiated up to a fast neutron fluence of 3.3 × 109 n/cm2 at a neutron irradiation facility. Mechanical performance of the unirradiated and irradiated specimens were investigated at room temperature and 300 ℃, respectively. The tensile strengths of the DMLS, DMT and CM 316L specimens are in descending order but the elongations are in reverse order, regardless of irradiation and temperature. The ratio of Vickers hardness to ultimate tensile strength was derived to be between 3.21 and 4.01. The additive manufacturing processes exhibit suitable mechanical performance, comparing the tensile strengths and elongations of the conventional machining process.
Medical technologies are gaining in importance because of scientific and technical progress in medicine and the increasing average lifetime of people. This has opened up a huge market for medical devices, where complex-shaped metallic parts made from biocompatible materials are in great demand. Today many of these components are already being manufactured by powder metallurgy technologies. This includes mass production of standard products and also customized components. In this paper some aspects related to metal injection molding of Ti and its alloys as well as modifications of microstructure and surface finish were discussed. The process chain of additive manufacturing (AM) was described and the current state of the art of AM processes like Selective Laser Melting and electron beam melting for medical applications was presented.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.