• Title/Summary/Keyword: metal/semiconductor Schottky diode

Search Result 25, Processing Time 0.037 seconds

Electrical Characteristics of Metal/n-InGaAs Schottky Contacts Formed at Low Temperature

  • 이홍주
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.5
    • /
    • pp.365-370
    • /
    • 2000
  • Schottky contacts on n-In$\_$0.53//Ga$\_$0.47//As have been made by metal deposition on substrates cooled to a temperature of 77K. The current-voltage and capacitance-voltage characteristics showed that the Schottky diodes formed at low temperature had a much improved barrier height compared to those formed at room temperature. The Schottky barrier height ø$\_$B/ was found to be increased from 0.2eV to 0.6eV with Ag metal. The saturation current density of the low temperature diode was about 4 orders smaller than for the room temperature diode. A current transport mechanism dominated by thermionic emission over the barrier for the low temperature diode was found from current-voltage-temperature measurement. Deep level transient spectroscopy studies exhibited a bulk electron trap at E$\_$c/-0.23eV. The low temperature process appears to reduce metal induced surface damage and may form an MIS (metal-insulator-semiconductor)-like structure at the interface.

  • PDF

Structural Analysis of Low Temperature Processed Schottky Contacts to n-InGaAs (저온공정 n-InGaAs Schottky 접합의 구조적 특성)

  • 이홍주
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.7
    • /
    • pp.533-538
    • /
    • 2001
  • The barrier height is found to increase from 0.25 to 0.690 eV for Schottky contacts on n-InGaAs using deposition of Ag on a substrate cooled to 77K(LT). Surface analysis leads to an interface model for the LT diode in which there are oxide compounds of In:O and As:O between the metal and semiconductor, leading to behavior as a metal-insulator-semiconductor diode. The metal film deposited t LT has a finer and more uniform structure, as revealed by scanning electron microscopy and in situ metal layer resistance measurement. This increased uniformity is an additional reason for the barrier height improvement. In contrast, the diodes formed at room temperature exhibit poorer performance due to an unpassivated surface and non-uniform metal coverage on a microscopic level.

  • PDF

Characteristics of Schottky Diode and Schottky Barrier Metal-Oxide-Semiconductor Field-Effect Transistors

  • Jang, Moon-Gyu;Kim, Yark-Yeon;Jun, Myung-Sim;Lee, Seong-Jae
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.5 no.2
    • /
    • pp.69-76
    • /
    • 2005
  • Interface-trap density, lifetime and Schottky barrier height of erbium-silicided Schottky diode are evaluated using equivalent circuit method. The extracted interface trap density, lifetime and Schottky barrier height for hole are determined as $1.5{\times}10^{13} traps/cm^2$, 3.75 ms and 0.76 eV, respectively. The interface traps are efficiently cured by $N_2$ annealing. Based on the diode characteristics, various sizes of erbium- silicided/platinum-silicided n/p-type Schottky barrier metal-oxide-semiconductor field effect transistors (SB-MOSFETs) are manufactured from 20 m to 35nm. The manufactured SB-MOSFETs show excellent drain induced barrier lowering (DIBL) characteristics due to the existence of Schottky barrier between source and channel. DIBL and subthreshold swing characteristics are compatible with the ultimate scaling limit of double gate MOSFETs which shows the possible application of SB-MOSFETs in nanoscale regime.

Electrical Characteristics of the SiC SBD Prepared by using the Facing Targets Sputtering Method (대향 타겟 스퍼터링법으로 제작한 SiC SBD의 전기적 특성)

  • Lee, Jinseon;Kang, Tai Young;Kim, Kyung Hwan
    • Journal of the Semiconductor & Display Technology
    • /
    • v.14 no.1
    • /
    • pp.27-30
    • /
    • 2015
  • SiC based Schottky barrier diodes were prepared by using the facing targets sputtering method. In this research, 4H-SiC polytypes of SiC were adopted and Molybdenum, Titanium was employed as the Schottky metal of the metal-semiconductor contacts. Both structures showed the rectifying nature in their forward and reverse J-V characteristic curve and the ideality factors calculated from these plots that were close to unity were represented the nearly ideal behavior. Difference of Schottky barrier height between prepared devices was also corresponding with the electrical characteristics of themselves. Therefore the suitability of the facing targets sputtering method for fabrication of Schottky diodes could be suggested from these results.

Fabrication of buried Schottky diode by selective LPE (선택적 액상 Epitaxy를 이용한 매립형 Schottky 다이오드의 제작)

  • Chung, Gi-Oong;Kwon, Young-Se
    • Proceedings of the KIEE Conference
    • /
    • 1987.11a
    • /
    • pp.518-520
    • /
    • 1987
  • The semiconductor-metal-semiconductor structure is considered to be promising for high speed electronic devices. To realize this, the selective LPE and the proper design of epitaxial mask were adopted. Enhanced As diffusion made it possible to grow GaAs over W on GaAs. Buried W Schottky diode was fabricated and the rectifying I-Y characteristics were obtained.

  • PDF

Tandem Structured Hot Electron-based Photovoltaic Cell with Double Schottky Barriers

  • Lee, Young Keun;Lee, Hyosun;Park, Jeong Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.310.1-310.1
    • /
    • 2013
  • We show the novel hot electron based-solar energy conversion using tandem structured Schottky diode with double Schottky barriers. In this report, we show the effect of the double Schottky barriers on solar cell performance by enhancing both of internal photoemission and band-to-band excitation. The tandem structured Au/Si diode capped with TiO2 layer as second semiconductor exhibited improved ability for light harvesting. The proposed mechanisms consist of multiple reflections of hot electrons and additional pathway of solar energy conversion due to presence of multiple interfaces between thin gold film and semiconductors. Short-circuit photocurrent measured on the tandem structured Au/Si diodes under illumination of AM1.5 increased by approximately 70% from 3.1% to 5.3% and overall incident photon to electron conversion efficiency (IPCE) was enhanced in visible light, revealing that the concept of the double Schottky barriers have significant potential as novel strategy for light harvesting.

  • PDF

Analysis of Schottky Barrier Height in Small Contacts Using a Thermionic-Field Emission Model

  • Jang, Moon-Gyu;Lee, Jung-Hwan
    • ETRI Journal
    • /
    • v.24 no.6
    • /
    • pp.455-461
    • /
    • 2002
  • This paper reports on estimating the Schottky barrier height of small contacts using a thermionic-field emission model. Our results indicate that the logarithmic plot of the current as a function of bias voltage across the Schottky diode gives a linear relationship, while the plot as a function of the total applied voltage across a metal-silicon contact gives a parabolic relationship. The Schottky barrier height is extracted from the slope of the linear line resulting from the logarithmic plot of current versus bias voltage across the Schottky diode. The result reveals that the barrier height decreases from 0.6 eV to 0.49 eV when the thickness of the barrier metal is increased from 500 ${\AA}$ to 900 ${\AA}$. The extracted impurity concentration at the contact interface changes slightly with different Ti thicknesses with its maximum value at about $2.9{\times}10^{20}\;cm^{-3}$, which agrees well with the results from secondary ion mass spectroscopy (SIMS) measurements.

  • PDF

Trend and Issues of van der Waals 2D Semiconductor Devices (반데르발스 2차원 반도체소자의 응용과 이슈)

  • Im, Seongil
    • Vacuum Magazine
    • /
    • v.5 no.2
    • /
    • pp.18-22
    • /
    • 2018
  • wo dimensional (2D) van der Waals (vdW) nanosheet semiconductors have recently attracted much attention from researchers because of their potentials as active device materials toward future nano-electronics and -optoelectronics. This review mainly focuses on the features and applications of state-of-the-art vdW 2D material devices which use transition metal dichalcogenides, graphene, hexagonal boron nitride (h-BN), and black phosphorous: field effect transistors (FETs), complementary metal oxide semiconductor (CMOS) inverters, Schottky diode, and PN diode. In a closing remark, important remaining issues of 2D vdW devices are also introduced as requests for future electronics and photonics applications.

Electrical characteristics of Au/3C-SiC/Si/Al Schottky, diode (Au/3C-SiC/Al 쇼터키 다이오드의 전기적 특성)

  • Shim, Jae-Cheol;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.65-65
    • /
    • 2009
  • High temperature silicon carbide Schottky diode was fabricated with Au deposited on poly 3C-SiC thin film grown on p-type Si(100) using atmospheric pressure chemical vapor deposition. The charge transport mechanism of the diode was studied in the temperature range of 300 K to 550 K. The forward and reverse bias currents of the diode increase strongly with temperature and diode shows a non-ideal behavior due to the series resistance and the interface states associated with 3C-SiC. The charge transport mechanism is a temperature activated process, in which, the electrons passes over of the low barriers and in turn, diode has a large ideality factor. The charge transport mechanism of the diode was analyzed by a Gaussian distribution of the Schottky barrier heights due to the Schottky barrier inhomogeneities at the metal-semiconductor interface and the mean barrier height and zero-bias standard deviation values for the diode was found to be 1.82 eV and $s_0$=0.233 V, respectively. The interface state density of the diode was determined using conductance-frequency and it was of order of $9.18{\times}10^{10}eV^{-1}cm^{-2}$.

  • PDF

The Schottky Diode of Optimal Stepped Oxide Layer for High Breakdown Voltage (높은 항복전압을 위한 최적 계단산화막의 쇼트키 다이오드)

  • Lee, Yong Jae;Lee, Moon Key;Kim, Bong Ryul
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.23 no.4
    • /
    • pp.484-489
    • /
    • 1986
  • A device with variable stepped oxide layer along the edge region of Schottky junction have been designed and fabricated. The effect of this stepped oxide layer in the edge region improves the breakdown voltage as a result of the by increase of the depletion layer width, and decreases the leakage current as compared to the effect of conventional field oxide layer, when the reverse voltage was applied. Experimental results shown that the Schottky diode with the the reverse voltage was applied. Experimenal results show that the Schottky diode with the optimal stepped oxide layer maintains nearly ideal I-V characteristics and excellent breakdown voltage(170V) by reducing the edge effect inherent in metal-semiconductor contacts. The optimal conditions of stepped oxide layer are 1700\ulcornerin thickness and 10\ulcorner in length.

  • PDF