• Title/Summary/Keyword: metagenomic analysis

Search Result 88, Processing Time 0.027 seconds

Functional Metagenomics using Stable Isotope Probing: a Review

  • Vo, Nguyen Xuan Que;Kang, Ho-Jeong;Park, Joon-Hong
    • Environmental Engineering Research
    • /
    • v.12 no.5
    • /
    • pp.231-237
    • /
    • 2007
  • The microbial eco-physiology has been the vital key of microbial ecological research. Unfortunately, available methods for direct identity of microorganisms and for the investigation of their activity in complicated community dynamics are limited. In this study, metagenomics was considered as a promising functional genomics tool for improving our understanding of microbial eco-physiology. Its potential applications and challenges were also reviewed. Because of tremendous diversity in microbial populations in environment, sequence analysis for whole metagenomic libraries from environmental samples seems to be unrealistic to most of environmental engineering researchers. When a target function is of interest, however, sequence analysis for whole metagenomic libraries would not be necessary. For this case, nucleic acids of active populations of interest can be selectively gained using another cutting-edge functional genomic tool, SIP (stable isotope probing) technique. If functional genomes isolated by SIP can be transferred into metagenomic library, sequence analysis for such selected functional genomes would be feasible because the reduced size of clone library may become adequate for sequencing analysis. Herein, integration of metagenomics with SIP was suggested as a novel functional genomics approach to study microbial eco-physiology in environment.

Metagenome, the Untapped Microbial Genome, toward Discovery of Novel Microbial Resources and Application into the Plant Pathology

  • Lee, Seon-Woo
    • The Plant Pathology Journal
    • /
    • v.21 no.2
    • /
    • pp.93-98
    • /
    • 2005
  • Molecular ecological studies of microbial communities revealed that only tiny fraction of total microorganisms in nature have been identified and characterized, because the majority of them have not been cultivated. A concept, metagenome, represents the total microbial genome in natural ecosystem consisting of genomes from both culturable microorganisms and viable but non-culturable bacteria. The construction and screening of metagenomic libraries in culturable bacteria constitute a valuable resource for obtaining novel microbial genes and products. Several novel enzymes and antibiotics have been identified from the metagenomic approaches in many different microbial communities. Phenotypic analysis of the introduced unknown genes in culturable bacteria could be an important way for functional genomics of unculturable bacteria. However, estimation of the number of clones required to uncover the microbial diversity from various environments has been almost impossible due to the enormous microbial diversity and various microbial population structure. Massive construction of metagenomic libraries and development of high throughput screening technology should be necessary to obtain valuable microbial resources. This paper presents the recent progress in metagenomic studies including our results and potential of metagenomics in plant pathology and agriculture.

Antimicrobial active clones from soil metagenomic library

  • H. K. Lim;Lee, E. H;Kim, J.C.;Park, G. J.;K S. Jang;Park, Y. H.;K Y. Cho;S, W. Lee
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.108.1-108
    • /
    • 2003
  • Soil metagenome is untapped total microbial genome including that of the majority of unculturable bacteria present in soil. We constructed soil metagenomic library in Escherichia coli using DNA directly extracted from two different soils, pine tree rhizosphere soil and forest topsoil. Metagenomic libraries constructed from pine tree rhizosphere soil and forest topsoil consisted of approximately 33,700 clones and 112,000 clones with average insert DNA size of 35-kb, respectively. Subsequently, we screened the libraries to select clones with antimicrobial activities against Saccharomyces cerevisiae and Agrobacterium tumefaciens using double agar layer method. So far, we have a clone active against S. cerevisiae and a clone active against A. tumefaciens from the forest topsoil library. In vitro mutagenesis and DNA sequence analysis of the antifungal clone revealed the genes involved in the biosynthesis of antimicrobial secondary metabolite. Metagenomic libraries constructed in this study would be subject to search for diverse genetic resources related with useful microbial products.

  • PDF

Development of a Novel Long-Range 16S rRNA Universal Primer Set for Metagenomic Analysis of Gastrointestinal Microbiota in Newborn Infants

  • Ku, Hye-Jin;Lee, Ju-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.6
    • /
    • pp.812-822
    • /
    • 2014
  • Metagenomic analysis of the human intestinal microbiota has extended our understanding of the role of these bacteria in improving human intestinal health; however, a number of reports have shown that current total fecal DNA extraction methods and 16S rRNA universal primer sets could affect the species coverage and resolution of these analyses. Here, we improved the extraction method for total DNA from human fecal samples by optimization of the lysis buffer, boiling time (10 min), and bead-beating time (0 min). In addition, we developed a new long-range 16S rRNA universal PCR primer set targeting the V6 to V9 regions with a 580 bp DNA product length. This new 16S rRNA primer set was evaluated by comparison with two previously developed 16S rRNA universal primer sets and showed high species coverage and resolution. The optimized total fecal DNA extraction method and newly designed long-range 16S rRNA universal primer set will be useful for the highly accurate metagenomic analysis of adult and infant intestinal microbiota with minimization of any bias.

Lipase Diversity in Glacier Soil Based on Analysis of Metagenomic DNA Fragments and Cell Culture

  • Zhang, Yuhong;Shi, Pengjun;Liu, Wanli;Meng, Kun;Bai, Yingguo;Wang, Guozeng;Zhan, Zhichun;Yao, Bin
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.9
    • /
    • pp.888-897
    • /
    • 2009
  • Lipase diversity in glacier soil was assessed by culture-independent metagenomic DNA fragment screening and confirmed by cell culture experiments. A set of degenerate PCR primers specific for lipases of the hormone-sensitive lipase family was designed based on conserved motifs and used to directly PCR amplify metagenomic DNA from glacier soil. These products were used to construct a lipase fragment clone library. Among the 300 clones sequenced for the analysis, 201 clones encoding partiallipases shared 51-82% identity to known lipases in GenBank. Based on a phylogenetic analysis, five divergent clusters were established, one of which may represent a previously unidentified lipase subfamily. In the culture study, 11 lipase-producing bacteria were selectively isolated and characterized by 16S rDNA sequences. Using the above-mentioned degenerate primers, seven lipase gene fragments were cloned, but not all of them could be accounted for by the clones in the library. Two full-length lipase genes obtained by TAIL-PCR were expressed in Pichia pastoris and characterized. Both were authentic lipases with optimum temperatures of ${\le}40^{\circ}C$. Our study indicates the abundant lipase diversity in glacier soil as well as the feasibility of sequence-based screening in discovering new lipase genes from complex environmental samples.

Metagenomic and Proteomic Analyses of a Mangrove Microbial Community Following Green Macroalgae Enteromorpha prolifera Degradation

  • Wu, Yijing;Zhao, Chao;Xiao, Zheng;Lin, Hetong;Ruan, Lingwei;Liu, Bin
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.12
    • /
    • pp.2127-2137
    • /
    • 2016
  • A mangrove microbial community was analyzed at the gene and protein levels using metagenomic and proteomic methods with the green macroalgae Enteromorpha prolifera as the substrate. Total DNA was sequenced on the Illumina HiSeq 2000 PE-100 platform. Two-dimensional gel electrophoresis in combination with liquid chromatography tandem mass spectrometry was used for proteomic analysis. The metagenomic data revealed that the orders Pseudomonadales, Rhizobiales, and Sphingomonadales were the most prevalent in the mangrove microbial community. By monitoring changes at the functional level, proteomic analyses detected ATP synthase and transporter proteins, which were expressed mainly by members of the phyla Proteobacteria and Bacteroidetes. Members of the phylum Proteobacteria expressed a high number of sugar transporters and demonstrated specialized and efficient digestion of various glycans. A few glycoside hydrolases were detected in members of the phylum Firmicutes, which appeared to be the main cellulose-degrading bacteria. This is the first report of multiple "omics" analysis of E. prolifera degradation. These results support the fact that key enzymes of glycoside hydrolase family were expressed in large quantities, indicating the high metabolic activity of the community.

Analytical Tools and Databases for Metagenomics in the Next-Generation Sequencing Era

  • Kim, Mincheol;Lee, Ki-Hyun;Yoon, Seok-Whan;Kim, Bong-Soo;Chun, Jongsik;Yi, Hana
    • Genomics & Informatics
    • /
    • v.11 no.3
    • /
    • pp.102-113
    • /
    • 2013
  • Metagenomics has become one of the indispensable tools in microbial ecology for the last few decades, and a new revolution in metagenomic studies is now about to begin, with the help of recent advances of sequencing techniques. The massive data production and substantial cost reduction in next-generation sequencing have led to the rapid growth of metagenomic research both quantitatively and qualitatively. It is evident that metagenomics will be a standard tool for studying the diversity and function of microbes in the near future, as fingerprinting methods did previously. As the speed of data accumulation is accelerating, bioinformatic tools and associated databases for handling those datasets have become more urgent and necessary. To facilitate the bioinformatics analysis of metagenomic data, we review some recent tools and databases that are used widely in this field and give insights into the current challenges and future of metagenomics from a bioinformatics perspective.

Metagenomic Analysis of BTEX-Contaminated Forest Soil Microcosm

  • Ji, Sang-Chun;Kim, Doc-Kyu;Yoon, Jung-Hoon;Lee, Choong-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.4
    • /
    • pp.668-672
    • /
    • 2007
  • A microcosmal experiment using a metagenomic technique was designed to assess the effect of BTEX (benzene, toluene, ethylbenzene, and xylenes) on an indigenous bacterial community in a Daejeon forest soil. A compositional shift of bacterial groups in an artificial BTEX-contaminated soil was examined by the 16S rDNA PCR-DGGE method. Phylogenetic analysis of 16S rDNAs in the dominant DGGE bands showed that the number of Actinobacteria and Bacillus populations increased. To confirm these observations, we performed PCR to amplify the 23S rDNA and 16S rDNA against the sample metagenome using Actinobacteria-targeting and Bacilli-specific primer sets, respectively. The result further confirmed that a bacterial community containing Actinobacteria and Bacillus was affected by BTEX.