• Title/Summary/Keyword: metabolites analysis

Search Result 656, Processing Time 0.024 seconds

American ginseng significantly reduced the progression of high-fat-diet-enhanced colon carcinogenesis in ApcMin/+ mice

  • Yu, Chunhao;Wen, Xiao-Dong;Zhang, Zhiyu;Zhang, Chun-Feng;Wu, Xiaohui;He, Xin;Liao, Yang;Wu, Ningning;Wang, Chong-Zhi;Du, Wei;He, Tong-Chuan;Yuan, Chun-Su
    • Journal of Ginseng Research
    • /
    • v.39 no.3
    • /
    • pp.230-237
    • /
    • 2015
  • Background: Colorectal cancer (CRC) is a leading cause of death worldwide. Chronic gut inflammation is recognized as a risk factor for tumor development, including CRC. American ginseng is a very commonly used ginseng species in the West. Methods: A genetically engineered $Apc^{Min/+}$ mouse model was used in this study. We analyzed the saponin composition of American ginseng used in this project, and evaluated its effects on the progression of high-fat-diet-enhanced CRC carcinogenesis. Results: After oral ginseng administration (10-20 mg/kg/d for up to 32 wk), experimental data showed that, compared with the untreated mice, ginseng very significantly reduced tumor initiation and progression in both the small intestine (including the proximal end, middle end, and distal end) and the colon (all p < 0.01). This tumor number reduction was more obvious in those mice treated with a low dose of ginseng. The tumor multiplicity data were supported by body weight changes and gut tissue histology examinations. In addition, quantitative real-time polymerase chain reaction analysis showed that compared with the untreated group, ginseng very significantly reduced the gene expression of inflammatory cytokines, including interleukin-$1{\alpha}$ (IL-$1{\alpha}$), IL-$1{\beta}$, IL-6, tumor necrosis factor-${\alpha}$, granulocyte-colony stimulating factor, and granulocyte-macrophage colony-stimulating factor in both the small intestine and the colon (all p < 0.01). Conclusion: Further studies are needed to link our observed effects to the actions of the gut microbiome in converting the parent ginsenosides to bioactive ginseng metabolites. Our data suggest that American ginseng may have potential value in CRC chemoprevention.

Isolation and Characterization of Antifungal Metabolites from Pterocarpus santalinus against Fusarium graminearum Causing Fusarium Head Blight on Wheat (자단향으로부터 밀 붉은곰팡이병균 Fusarium graminearum에 대한 항진균활성 물질의 분리 및 특성 규명)

  • Kim, Ji-In;Ha, Areum;Park, Ae Ran;Kim, Jin-Cheol
    • Research in Plant Disease
    • /
    • v.23 no.3
    • /
    • pp.268-277
    • /
    • 2017
  • Fusarium head bight (FHB) is a devastating disease on major cereal crops worldwide which causes primarily by Fusarium graminearum. Synthetic fungicides are generally used in conventional agriculture to control FHB. Their prolonged usage has led to environmental issues and human health problems. This has prompted interest in developing environmentally friendly biofungicides, including botanical fungicides. In this study, a total 100 plant extracts were tested for antifungal activity against F. graminearum. The crude extract of Pterocarpus santalinus heartwood showed the strongest antifungal activity and contained two antifungal metabolites which were identified as ${\alpha}$-cedrol and widdrol by GC-MS analysis. ${\alpha}$-Cedrol and widdrol isolated from P. santalinus heartwood extract had 31.25 mg/l and 125 mg/l of minimal inhibitory concentration against the spore germination of F. graminearum, and also showed broad spectrum antifungal activities against various plant pathogens. In addition, the wettable powder type formulation of heartwood extract of P. santalinus decreased FHB incidence in dose-dependent manner and suppressed the development of FHB with control values of 87.2% at 250-fold dilution, similar to that of chemical fungicide (92.6% at 2,000-fold dilution). This study suggests that the heartwood extract of P. santalinus could be used as an effective biofungicide for the control of FHB.

Evaluations of Inhomogeneous Shimming in $^1$H MR Spectroscopy (자기공명분광에서 비균질 자장보정에 관한 평가)

  • Choe, Bo-Young;Baik, Hyeon-Man;Suh, Tae-Suk;Lee, Hyoung-Koo;Chun, Heung-Jae;Shim, Kyung-Sub
    • Progress in Medical Physics
    • /
    • v.11 no.1
    • /
    • pp.73-83
    • /
    • 2000
  • In this study, we investigate the effects of poor shimming on quantitative measurement of ratios of metabolite levels by proton magnetic resonance spectroscopy ($^1$H MRS). Coefficient of variation (COV) of metabolite ratios for point resolved spectroscopy (PRESS) and stimulated-echo acquisition mode (STEAM) spectra was evaluated from a phantom containing in vivo levels of metabolites using a conventional whole body 1.5T MR system and conventional acquisition and analysis protocol. A statistical P-value was also calculated from a linear regression for relationship of metabolite ratios. N-acetylaspartate (NAA)/ creatine (Cr) and NAA/ choline (Cho) had low COV values for the long and short TE spectra (29.1 and 27.5%; 23.8 and 12.6 %), whereas Cho/Cr and Cr/Cho had high COV values (50.0 and 68.6 %; 27.5 and 29.3 %). A linear relationship between NAA/Cr and Cho/Cr, and between NAA/Cho and Cr/Cho revealed the statistical significance in the long and short TE spectra, respectively (P < 0.0001 and P < 0.0001; P = 0.015 and P = 0.005). There was no significant relationship between Cho/NAA and Cr/NAA in the measurement (P = 0.159; P = 0.910). The present study suggested that NAA/Cr and NAA/Cho could be useful for data with poor shimming in $^1$H MR spectroscopy. In conclusion, statistical significance of metabolite ratios indicated that the Cr and Cho levels could be interpreted as a significant alteration factor in the long and short TE spectra, and then should be used with care to provide precise metabolite quantification.

  • PDF

Inhibition of Microbial Quorum Sensing Mediated Virulence Factors by Pestalotiopsis sydowiana

  • Parasuraman, Paramanantham;Devadatha, B;Sarma, V. Venkateswara;Ranganathan, Sampathkumar;Ampasala, Dinakara Rao;Reddy, Dhanasekhar;Kumavath, Ranjith;Kim, In-Won;Patel, Sanjay K.S.;Kalia, Vipin Chandra;Lee, Jung-Kul;Siddhardha, Busi
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.4
    • /
    • pp.571-582
    • /
    • 2020
  • Quorum sensing (QS)-mediated infections cause severe diseases in human beings. The control of infectious diseases by inhibiting QS using antipathogenic drugs is a promising approach as antibiotics are proving inefficient in treating these diseases. Marine fungal (Pestalotiopsis sydowiana PPR) extract was found to possess effective antipathogenic characteristics. The minimum inhibitory concentration (MIC) of the fungal extract against test pathogen Pseudomonas aeruginosa PAO1 was 1,000 ㎍/ml. Sub-MIC concentrations (250 and 500 ㎍/ml) of fungal extract reduced QS-regulated virulence phenotypes such as the production of pyocyanin, chitinase, protease, elastase, and staphylolytic activity in P. aeruginosa PAO1 by 84.15%, 73.15%, 67.37%, 62.37%, and 33.65%, respectively. Moreover, it also reduced the production of exopolysaccharides (74.99%), rhamnolipids (68.01%), and alginate (54.98%), and inhibited the biofilm formation of the bacteria by 90.54%. In silico analysis revealed that the metabolite of P. sydowiana PPR binds to the bacterial QS receptor proteins (LasR and RhlR) similar to their respective natural signaling molecules. Cyclo(-Leu-Pro) (CLP) and 4-Hydroxyphenylacetamide (4-HPA) were identified as potent bioactive compounds among the metabolites of P. sydowiana PPR using in silico approaches. The MIC values of CLP and 4-HPA against P. aeruginosa PAO1 were determined as 250 and 125 ㎍/ml, respectively. All the antivirulence assays were conducted at sub-MIC concentrations of CLP (125 ㎍/ml) and 4-HPA (62.5 ㎍/ml), which resulted in marked reduction in all the investigated virulence factors. This was further supported by gene expression studies. The findings suggest that the metabolites of P. sydowiana PPR can be employed as promising QS inhibitors that target pathogenic bacteria.

Screening of the total phenol content and analysis of phenolic compound in rice (Oryza saiva L.) genetic resources

  • Lee, Ji-Hee;An, Min-Jeong;Kim, Seung-Hyun;Chung, Ill-Min
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.290-290
    • /
    • 2017
  • Rice (Oryza sativa L.) is one of the most consumed staple food crop which is energy source as carbohydrate and also is considered as the important antioxidant sources including various phenolic compounds. According to the increasing demand of healthy life, the concern to antioxidant also is increasing because of its health-promoting effect. Phenolic compounds are one of the plant secondary metabolites class, which shows various benefits to preventing or treating chronic diseases. In this study, we have measured the total phenol content from total 647 rice samples using the Floin-Ciocalteau method, and then were selected 30 rice genetic resources classified with high, middle, and low group on the basis of total phenol content. The average of the total phenol content of each group was high-group ($6892.9{\pm}488.5{\mu}g\;GAE/g$) > middle-group ($1428.1{\pm}76.0{\mu}g\;GAE/g$) > low-group ($97.6{\pm}11.4{\mu}g\;GAE/g$). The selected rice samples were analyzed with LC-MS/MS to find the composition and concentration of individual phenolic in rice grain. High-group and middle-group contained large amounts of protocatechuic acid and (+)-catechin whereas low-group showed limited amount. Among high-group samples, rice samples with black pericarp color (IT 174089, IT 220079, and IT 259958) had high content of peonidin-3-O-glucoside. Further, these black rice samples were special since polydatin, rarely found stilbenoid in rice grain, was detected. Overall, both the sum of phenolic acid and the sum of flavonoid were high-group > middle-group > low-group. Also, each group exhibited different phenolic compositions; high-group consisted of flavonoid more than phenolic acid, middle-group and low-group was comprised of phenolic acid rather than flavonoid, and non-pigmented rice was composed by fully phenolic acid. The total phenol content had positive relationships with the sum of phenolic compound (r = 0.64), the sum of flavonoid (r = 0.74) at the significance level of p < 0.0001. In addition, protocatechuic acid and quercetin showed positive correlation with above phenolic composition parameters; in order, r = 0.98, 0.65 for protocatechuic acid and r = 0.73, 0.78 for quercetin (p < 0.0001). In conclusion, the total phenol content assay showed the possibility of utilization as a phenolic composition indicator in rice grain. Also, this result was suggested study pigment on other material.

  • PDF

In Vitro Metabolism of a New Cardioprotective Agent, KR-33028 in the Human Liver Microsomes and Cryopreserved Human Hepatocytes

  • Kim Hyojin;Yoon Yune-Jung;Kim Hyunmi;Cha Eun-Young;Lee Hye Suk;Kim Jeong-Han;Yi Kyu Yang;Lee Sunkyung;Cheon Hyae Gyeong;Yoo Sung-Eun;Lee Sang-Seop;Shin Jae-Gook;Liu Kwang-Hyeon
    • Archives of Pharmacal Research
    • /
    • v.28 no.11
    • /
    • pp.1287-1292
    • /
    • 2005
  • KR-33028 (N-[4-cyano-benzo[b]thiophene-2-carbonyl]guanidine) is a new cardioprotective agent for preventing ischemia-reperfusion injury. This study was performed to identify the metabolic pathway of KR-33028 in human liver microsomes and to compare its metabolism with that of cryopreserved human hepatocytes. Human liver microsomal incubation of KR-33028 in the presence of NADPH and UDPGA resulted in the formation of four metabolites, M1, M2, M3, and M4. M1 and M2 were identified as 5-hydroxy-KR-33028 and 7-hydroxy-KR-33028, respectively, on the basis of LC/MS/MS analysis with the synthesized authentic standard. M3 and M4 were suggested to be dihydroxy-KR-33028 and hydroxy-KR-33028-glucuronide, respectively. Metabolism of KR-33028 in cryopreserved human hepatocytes resulted in the formation of M1, M2, and M4. These data show a good correlation between major metabolites formed in human liver microsomes and cryopreserved human hepatocytes. In addition, KR­33028 was found to inhibit moderately the metabolism of CYP1A2 substrates. Based on the results obtained metabolic pathway of KR-33028 is proposed.

Enhanced Strobilus Production and Metabolic Alterations in Larix kaempferi by Stem Girdling (환상박피 처리에 의한 일본잎갈나무의 착과유도 효과와 대사물질의 변화)

  • Lee, Wi Young;Park, Eung-Jun;Kang, Jin Taek;Ahn, Jin-Kwon
    • Journal of Korean Society of Forest Science
    • /
    • v.100 no.3
    • /
    • pp.367-373
    • /
    • 2011
  • The demand for Japanese larch (Larix kaempferi) seeds has increased in Korea but their supply has been limited due to sporadic natural seed production. To enhance seed production, stem girdling was applied to 42-yearold Japanese larches, resulting in remarkable enhancement of strobilus production in terms of the rate of strobilusbearing tree and the number of strobilus per tree. Metabolic alterations in the girdled and the control trees were interrogated through GC/MS analysis. In the girdled tree, the contents of 14 individual metabolites including polar and non-polar compounds were significantly increased compared to the control. In the cambium and phloem tissues of girdled trees, the contents of pimaric acid, phosphoric acid, sucrose, and two different unknown compounds were enhanced, while the levels of malic acid, inositol, two different disaccharide, 11-trans-Octadecenoic acid and 4 different unknown compounds were decreased compared to the control. The girdled trees showed to be contained significantly higher amount of total nitrogen in the cambium and phloem tissues than that of control trees. Although the role of individual metabolites on enhanced strobilus production remains unclear, the approach presented in this study might provide useful information in elucidating metabolic network modulation induced by girdling and will be further applied for enhanced strobilus production in Japanese larch trees.

Exploration of an Area with High Concentrations of Particulate Matter and Biomonitoring Survey of Volatile Organic Compounds among the Residents (부산 내 미세먼지 고농도 지역 탐색 및 체내 휘발성유기화합물 바이오모니터링 조사)

  • Hyunji Ju;Seungho Lee;Jae-Hee Min;Yong-Sik Hwang;Young-Seoub Hong
    • Journal of Environmental Health Sciences
    • /
    • v.49 no.6
    • /
    • pp.344-352
    • /
    • 2023
  • Background: With its developed port and related industries, the concentration of fine dust is high in Busan compared to other cities in South Korea. Many studies have reported the health effects of fine dust, but there has been a lack of information regarding concentrations of volatile organic compounds among those who exposed to high levels of fine dust. Objectives: This study aimed to define an area with high concentrations of particulate matter and perform biomonitoring surveys among the residents of the area. Methods: Air quality data was collected and the mean level of each district in Busan was derived. We then defined the area with the highest concentrations of PM10 as a target site. Urine samples were collected from the 400 participants and analyzed for VOCs metabolites - trans,trans-Muconic Acid (t,t-MA) and N-AcetylS-(benzyl)-L-cysteine (BMA). Interviews were conducted by trained investigators to examine demographic information. The levels of t,t-MA and BMA were compared with representative South Korean population data (Korean National Environmental Health Survey). The association of the VOC metabolites and fine dust were analyzed by general linear regression analysis. Results: The mean of PM10 in the target site was 42.50 ㎍/m3 from 2018 to 2020. Among the 400 participants in the target site, 74.8% were female and the average age of the participants was 66 years. The geometric mean of t,t-MA was 71.15 ㎍/g creatinine and the BMA was 7.00 ㎍/g creatinine among the residents. The levels were higher than the geometric mean from the 4th KoNEHS. The levels of t,t-MA showed significance in BMI, smoking status, and household income. BMA showed significance in gender and age. Conclusions: Compared to the general population of South Korea, the target site's residents had higher biomonitoring levels. Based on this study, continuous screening for high risk areas, including the target site, and biomonitoring of the residents are required.

Pigment and Saikosoponin Production Through Bioreactor Culture of Carthamus tinctorius and Bupleurum falcatum

  • Wenyuan Gao;Lei Fan;Hahn, Eun-Joo;Paek, Kee-Yoeup
    • Journal of Plant Biotechnology
    • /
    • v.3 no.1
    • /
    • pp.1-5
    • /
    • 2001
  • Traditional culture technology of medicinal plants mainly depends on the field culture, which has many problems. With progress of modern culture technology, it has become possible to produce valuable secondary metabolites from medicinal plants. In this paper, we discuss about the pigment and saikosaponin production from too medicinal plants, Carthamus tinctorius and Bupleurum falcatum, through bioreactor culture system. A two-stage bioreactor culture system was established for the production of yellow and red pigments and saikosaponins by cell suspension cultures of Carthamus tinctorius and Bupleurum falcatum. In Carthamus tinctorius, balloon type airlift bioreactors and column type airlift bioreactors were employed for the tell culture and for the pigment production, respectively. The greatest pigment production was obtained on White medium supplemented with 4 mg/L kinetin, high levels of sucrose concentration and photosynthetic photon flux. In Bupleurum falcatum, adventitious roots were cultured in balloon type airlift bioreactors and the root growth was greatest on SH medium containing 5 mg/L IBA and 0.2 mg/L kinetin. HPLC analysis showed that the contents of main active saikosaponins a, c, and d in adventitious roots were almost the same as those in field cultured root.

  • PDF

Microbial Conversion of Ginsenoside $Rb_1$ to Minor Ginsenoside $F_2$ and Gypenoside XVII by Intrasporangium sp. GS603 Isolated from Soil

  • Cheng, Le-Qin;Na, Ju-Ryun;Kim, Myung-Kyum;Bang, Myun-Ho;Yang, Deok-Chun
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.12
    • /
    • pp.1937-1943
    • /
    • 2007
  • A new strain, GS603, having ${\beta}$-glucosidase activity was isolated from soil of a ginseng field, and its ability to convert major ginsenoside $Rb_1$ to minor ginsenoside or gypenoside was studied. Strain GS603 was identified as an Intrasporangium species by phylogenetic analysis and showed high ginsenoside-converting activity in LB and TSA broth but not in nutrient broth. The culture broth of the strain GS603 could convert ginsenoside $Rb_1$i into two metabolites, which were analyzed by TLC and HPLC and shown to be the minor ginsenoside $F_2$ and gypenoside XVII by NMR.