DOI QR코드

DOI QR Code

Enhanced Strobilus Production and Metabolic Alterations in Larix kaempferi by Stem Girdling

환상박피 처리에 의한 일본잎갈나무의 착과유도 효과와 대사물질의 변화

  • Lee, Wi Young (Division of Forest Biotechnology, Korea Forest Research Institute) ;
  • Park, Eung-Jun (Division of Forest Biotechnology, Korea Forest Research Institute) ;
  • Kang, Jin Taek (Division of Forest Genetic Resources, Korea Forest Research Institute) ;
  • Ahn, Jin-Kwon (Division of Forest Biotechnology, Korea Forest Research Institute)
  • 이위영 (국립산림과학원 산림생명공학과) ;
  • 박응준 (국립산림과학원 산림생명공학과) ;
  • 강진택 (국립산림과학원 산림유전자원과) ;
  • 안진권 (국립산림과학원 산림생명공학과)
  • Received : 2011.03.31
  • Accepted : 2011.06.01
  • Published : 2011.09.30

Abstract

The demand for Japanese larch (Larix kaempferi) seeds has increased in Korea but their supply has been limited due to sporadic natural seed production. To enhance seed production, stem girdling was applied to 42-yearold Japanese larches, resulting in remarkable enhancement of strobilus production in terms of the rate of strobilusbearing tree and the number of strobilus per tree. Metabolic alterations in the girdled and the control trees were interrogated through GC/MS analysis. In the girdled tree, the contents of 14 individual metabolites including polar and non-polar compounds were significantly increased compared to the control. In the cambium and phloem tissues of girdled trees, the contents of pimaric acid, phosphoric acid, sucrose, and two different unknown compounds were enhanced, while the levels of malic acid, inositol, two different disaccharide, 11-trans-Octadecenoic acid and 4 different unknown compounds were decreased compared to the control. The girdled trees showed to be contained significantly higher amount of total nitrogen in the cambium and phloem tissues than that of control trees. Although the role of individual metabolites on enhanced strobilus production remains unclear, the approach presented in this study might provide useful information in elucidating metabolic network modulation induced by girdling and will be further applied for enhanced strobilus production in Japanese larch trees.

낙엽송(Larix kaempferi)의 종자에 대한 수요는 증가하고 있으나 채종원에서의 종자생산량은 저조한 실정이다. 종자생산량을 증가시키기 위하여 42년생의 낙엽송 채종목에 환상박피처리를 한 결과 처리목에서 착과량과 착과목 비율이 무처리목에 비해 매우 높게 나타나 환상박피의 처리효과가 명확하였다. 환상박피처리에 의한 낙엽송 채종목의 대사물질 변화를 무처리간 비교분석하기위하여 GC/MS를 이용하여 주관부위의 흉고높이에서 체관부를 포함한 형성층조직 내의 대사물질을 분석하였다. 환상박피 처리목에서 14종의 극성 및 비극성 물질의 함량이 무처리목에 비해 유의적으로 차이가 있는 것으로 나타났다. 환상박피 처리에 의해 인산, sucrose, pimaric acid와 미지 물질 2종의 함량이 무처리목에 비해 상대적으로 증가하였고, malic acid, inositol, 2종의 2당류, 11-trans-Octadecenoic acid 및 4종의 미지 물질 함량은 상대적으로 감소한 것으로 나타났다. 또한 환상박피 처리 목은 무처리목에 비해 유의적으로 높은 전질소 함량을 나타냈다. 이러한 연구결과는 환상박피 처리에 의한 대사물질의 변화에 대한 정보를 제공하고 나아가 낙엽송 종자 생산 증진을 위한 연구에 이용될 수 있을 것이다.

Keywords

References

  1. 국립산림과학원. 2006. 임목육종 50년. pp. 48-57.
  2. 김인식, 김종한, 강진택, 이병실. 2008. 낙엽송 클론의 암꽃 개화량 변이. 한국식물자원학회지 21: 1-4.
  3. 안기완. 1997. 낙엽송 간벌재의 활용시스템에 관한 연구 -일본 북해도 하천정 산림조합을 대상으로-. 산림경제연구 5: 80-88.
  4. 한상억, 박유헌, 송정호, 구영본, 김장수. 2001. 낙엽송자.우화의 개화특성. 한국육종학회지 33: 181-185.
  5. Bonnet-Masimbert, M. 1982: Effects of growth regulators, girdling and mulching on flowering of young European and Japanese larches under field conditions. Canadian Journal of Forest Research 12: 270-279. https://doi.org/10.1139/x82-040
  6. Bonnet-Masimbert, M. and Webber, J.E. 1995. From flower induction to seed production in forest tree orchards. Tree Physiology 15: 419-426. https://doi.org/10.1093/treephys/15.7-8.419
  7. De Schepper, V., Steppe, K., Van Labeke, M.C. and Lemeur, R. 2010. Detailed analysis of double girdling effects on stem diameter variations and sap flow in young oak trees. Environmental and Experimental Botany 68: 149-156. https://doi.org/10.1016/j.envexpbot.2009.11.012
  8. Ebell, LF. 1971. Girdling: its effect on carbohydrate status and on reproductive bud and cone development of Douglasfir. Canadian Journal of Botany 49: 453-466. https://doi.org/10.1139/b71-073
  9. Eriksson, S., Bohlenius, H., Moritz, T., and Nilsson, O. 2006. $GA_{4}$ is the active gibberellin in the regulation of LEAFY transcription and Arabidopsis floral initiation The Plant Cell 18: 2172-2181. https://doi.org/10.1105/tpc.106.042317
  10. Eysteinsson T. and Greenwood M.S. 1990. Promotion of flowering in young Larix laricina grafts by gibberellin A4/7 and root pruning. Canadian Journal of Forest Research 20: 1448-1452. https://doi.org/10.1139/x90-191
  11. Fiehn, O. 2002. Metabolomics: the link between genotypes and phenotypes. Plant Molecular Biology 48: 155-171. https://doi.org/10.1023/A:1013713905833
  12. Hamaya T. and Kurahashi A. 1970. Research on some treatments for the induction of flowering in Japanese Larch. Journal of Japanese Forest Society 52(8): 244-253.
  13. John, D.W., Margaret, S., Trevor, O. 2008. Journal of Experimental Botany 59(12): 3215-3228. https://doi.org/10.1093/jxb/ern188
  14. King, R.W. and Ben-Tal, Y. 2001. A florigenic effect of sucrose in Fuchsia hybrida is blocked by gibberellin-induced assimilate competition. Plant Physiology 125: 488-496. https://doi.org/10.1104/pp.125.1.488
  15. Lee, W.Y., Lee, J.S., Lee, J.H., Noh, E.W. and Park, E.J. 2011. Enhanced seed production and metabolic alterations in Larix leptolepis by girdling. Forestry Ecology and Management 261: 1957-1961. https://doi.org/10.1016/j.foreco.2011.02.022
  16. Ossipov, V., Ossipova, S., Bykov, V., Oksanen, E., Koricheva, J. and Haukioja, E. 2008. Application of metabolomics to genotype and phenotype discrimination of birch trees grown in a long-term open-field experiment. Metabolomics 4: 39-51. https://doi.org/10.1007/s11306-007-0097-8
  17. Owens, J.N. and Molder, M. 1979b. Bud development in Larix occidentalis. II. Cone differentiation and early development. Canadian Journal of Botany 57: 1557-1572. https://doi.org/10.1139/b79-194
  18. Pharis, R.P., Webber J.E. and Ross S.D. 1987. The promotion of flowering in forest trees by gibberellin $A_{4/7}$ and cultural treatments: a review of the possible mechanisms. Forest Ecology and Management 19: 65-84. https://doi.org/10.1016/0378-1127(87)90012-0
  19. Richard, M. 1997. Floral induction in woody angiosperms. New Forests. 14: 179-202. https://doi.org/10.1023/A:1006560603966
  20. Robinson, A.R., Ukrainetz, N.K., Kang, K.Y. and Mansfield, S.D. 2007. Metabolite profiling of Douglas-fir (Pseudotsuga menziesii) field trials reveals strong environmental and weak genetic variation. New Phytologist 174: 762-773. https://doi.org/10.1111/j.1469-8137.2007.02046.x
  21. Ross, S.D. 1983. Enhancement of shoot elongation in Douglas- fir by gibberellin $A_{4/7}$ and its relation to the hormonal promotion of flowering. Canadian Journal of Forest Research 13: 986-994. https://doi.org/10.1139/x83-131
  22. Shearer, R.C. and Schmidt, W.C. 1987. Cone production and stand density in young Larix occidentalis. Forestry Ecology and Management 19: 219-226. https://doi.org/10.1016/0378-1127(87)90030-2
  23. Wheeler, N.C., Cade, S.C., Masters, C.J., Ross, S.D., Keeley, J.W. and Hsin, L.Y. 1985. Girdling: a safe, effective and practical treatment for enhancing seed yields in Douglas-fir seed orchards. Canadian Journal of Forest Research 15: 505-510. https://doi.org/10.1139/x85-083
  24. Xu, Z.H., Prasolova, N.V., Lundkvist, K., Beadle, C. and Leaman, T. 2003. Genetic variation in branchlet carbon and nitrogen isotope composition and nutrient concentration of 11-year-old hoop pine families in relation to tree growth in subtropical Australia. Forest Ecology and Management 186: 359-371. https://doi.org/10.1016/S0378-1127(03)00304-9