• Title/Summary/Keyword: metabolites analysis

Search Result 656, Processing Time 0.023 seconds

Relationship between the use of plastics in refrigerator food storage and urine phthalate metabolites: the Korean National Environmental Health Survey (KoNEHS) cycle 3

  • Jisoo Kang;Seong-yong Cho;Seongyong Yoon
    • Annals of Occupational and Environmental Medicine
    • /
    • v.35
    • /
    • pp.53.1-53.15
    • /
    • 2023
  • Background: Plastics are high-molecular-weight materials composed of long carbon chains. They are prevalent in daily life, present in various items such as food containers and microwavable packaging. Phthalates, an additive used to enhance their flexibility, are endocrine-disrupting chemicals. We utilized the data from the Korean National Environmental Health Survey (KoNEHS) cycle 3, representing the general South Korean population, to investigate the relationship between the use of plastics in refrigerator food storage and phthalate exposure. Methods: We assessed 3,333 adult participants (aged ≥ 19 years) including 1,526 men and 1,807 women, using data from KoNEHS cycle 3. Using the 75th percentile concentration, urine phthalate metabolites were categorized into high and low-concentration groups. χ2 test was conducted to analyze variations in the distribution of each variable, considering sociodemographic factors, health-related factors, food intake, the use of plastics, and the concentration of urine phthalate metabolites as the variables. To calculate odds ratios (ORs) for the high-concentration group of urine phthalate metabolites based on the use of plastics in refrigerator food storage, logistic regression analysis was conducted. Results: In men, the use of plastics in refrigerator food storage had significantly higher adjusted ORs compared to those using the others. The adjusted ORs were calculated as follows: mono-(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP) had an OR of 1.35 (95% confidence interval [CI]: 1.05-1.72), mono-(2-ethyl-5-oxohexyl) phthalate (MEOHP) had an OR of 1.48 (95% CI: 1.16-1.88), mono-(2-ethyl-5-carboxypentyl) phthalate (MECPP) had an OR of 1.32 (95% CI: 1.04-1.66), ∑di(2-ethylhexyl) phthalate (∑DEHP) had an OR of 1.37 (95% CI: 1.08-1.74) and mono-n-butyl phthalate (MnBP) had an OR of 1.44 (95% CI: 1.13-1.84). Conclusion: The concentrations of urine phthalate metabolites (MEHHP, MEOHP, MECPP, ∑DEHP, and MnBP) were significantly higher in men who used plastics in refrigerator food storage compared to those using the others.

Genomics and LC-MS Reveal Diverse Active Secondary Metabolites in Bacillus amyloliquefaciens WS-8

  • Liu, Hongwei;Wang, Yana;Yang, Qingxia;Zhao, Wenya;Cui, Liting;Wang, Buqing;Zhang, Liping;Cheng, Huicai;Song, Shuishan;Zhang, Liping
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.3
    • /
    • pp.417-426
    • /
    • 2020
  • Bacillus amyloliquefaciens is an important plant disease-preventing and growth-promoting microorganism. B. amyloliquefaciens WS-8 can stimulate plant growth and has strong antifungal properties. In this study, we sequenced the complete genome of B. amyloliquefaciens WS-8 by Pacific Biosciences RSII (PacBio) Single Molecule Real-Time (SMRT) sequencing. The genome consists of one chromosome (3,929,787 bp) and no additional plasmids. The main bacteriostatic substances were determined by genome, transcriptome, and mass spectrometry data. We thereby laid a theoretical foundation for the utilization of the strain. By genomic analysis, we identified 19 putative biosynthetic gene clusters for secondary metabolites, most of which are potentially involved in the biosynthesis of numerous bioactive metabolites, including difficidin, fengycin, and surfactin. Furthermore, a potential class II lanthipeptide biosynthetic gene cluster and genes that are involved in auxin biosynthesis were found. Through the analysis of transcriptome data, we found that the key bacteriostatic genes, as predicted in the genome, exhibited different levels of mRNA expression. Through metabolite isolation, purification, and exposure experiments, we found that a variety of metabolites of WS-8 exert an inhibitory effect on the necrotrophic fungus Botrytis cinerea, which causes gray mold; by mass spectrometry, we found that the main substances are mainly iturins and fengycins. Therefore, this strain has the potential to be utilized as an antifungal agent in agriculture.

A Study on the Analysis of Methylprednisolone Acetate and its Metabolites in Rat Urine by LC/MS (LC/MS를 이용한 뇨중에서의 Methylprednisolone Acetate 및 그 대사물질 분석에 관한 연구)

  • Park, Song-Ja;Pyo, Hee Soo;Kim, Yun Je;Park, Seong Soo;Park, Jongsei
    • Analytical Science and Technology
    • /
    • v.8 no.2
    • /
    • pp.139-159
    • /
    • 1995
  • Positive ion mass spectra of some corticosteroids were obtained by using liquid chromatography-mass spectrometry(LC-MS). The base peak of each compound showed the protonated molecular ion [$MH^+$], ammonium adduct ion [${MNH_4}^+$] or [$MH^+-60$] ion according to its chemical structure and other characteristic mass ions were [$MH^+-18$], [${MNH_4}^+-18$] and so on. Several rat urinary metabolites of methylprednisolone acetate after the oral administration were detected by the thermospray LC-MS. The identified major metabolites were 20-hydroxymethylprednisolone(20-HMP), methylprednisolone(MP) and methylprednisone(11-KMP), which were supposed to be formed by deacetylation at the position of C-21, reduction at C-20, oxidation at C-11, or due to the bond cleavage between C-17 and C-20.

  • PDF

The study on the pretreatments for the analys is of benzidine metabolites in urine (요중 벤지딘 대사물질 분석의 전처리 및 저장방법에 따른 회수율 비교)

  • Kim, Hyun Soo;Won, Jonguk;Kim, Chi Nyon;Roh, Jaehoon
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.9 no.2
    • /
    • pp.100-109
    • /
    • 1999
  • This study evaluates the pretreatment for analysis of benzidine metabolites in urine by measuring the recovery rates according to the temperature and periods of storage of the urine. By the solid phas e extraction, the recovery rates of basic hydrolysis are benzidine 67.4 %, monoacetylbenzidine 105.1 %, and diacetylbenzidine 115.8 %, respectively. By the liquid extraction, the recovery rates of back-extraction into 0.1 M perchloric acid are benzidine 105.7%, monoacetylbenzidine 94.2 %, diacetylbenzidine 72.8 %, respectively. The difference of the recovery rates between the back-extraction into 0.1 M HCl and 0.1 M perchloic acid after basic hydrolysis are 101 % and 98.8 %, respectively. When the recovery rates of the urinary s amples of pH 3, pH 7, pH 12 at $25^{\circ}C$ and $-76^{\circ}C$ are compared for four weeks, there are no differences according to the temperature and the periods of storage. The above results show that the solid phase extraction and back-extraction by 0.1 M perchloric acid after basic hydrolys is are suitable for the analysis of benzidine metabolites. There are no difference of the recovery rates of the urinary samples stored at $25^{\circ}C$ and $-76^{\circ}C$ at pH 3, pH 7, pH 12, respectively for 28 days.

  • PDF

Metabolomic profiling of postmortem aged muscle in Japanese Brown beef cattle revealed an interbreed difference from Japanese Black beef

  • Susumu Muroya;Riko Nomura;Hirotaka Nagai;Koichi Ojima;Kazutsugu Matsukawa
    • Animal Bioscience
    • /
    • v.36 no.3
    • /
    • pp.506-520
    • /
    • 2023
  • Objective: Japanese Brown (JBR) cattle, especially the Kochi (Tosa) pedigree (JBRT), is a local breed of moderately marbled beef. Despite the increasing demand, the interbreed differences in muscle metabolites from the highly marbled Japanese Black (JBL) beef remain poorly understood. We aimed to determine flavor-related metabolites and postmortem metabolisms characteristic to JBRT beef in comparison with JBL beef. Methods: Lean portions of the longissimus thoracis (loin) muscle from four JBRT cattle were collected at 0, 1, and 14 d postmortem. The muscle metabolomic profiles were analyzed using capillary electrophoresis time-of-flight mass spectrometry. The difference in post-mortem metabolisms and aged muscle metabolites were analyzed by statistical and bioinformatic analyses between JBRT (n = 12) and JBL cattle (n = 6). Results: A total of 240 metabolite annotations were obtained from the detected signals of the JBRT muscle samples. Principal component analysis separated the beef samples into three different aging point groups. According to metabolite set enrichment analysis, post-mortem metabolic changes were associated with the metabolism of pyrimidine, nicotinate and nicotinamide, purine, pyruvate, thiamine, amino sugar, and fatty acid; citric acid cycle; and pentose phosphate pathway as well as various amino acids and mitochondrial fatty acid metabolism. The aged JBRT beef showed higher ultimate pH and lower lactate content than aged JBL beef, suggesting the lower glycolytic activity in postmortem JBRT muscle. JBRT beef was distinguished from JBL beef by significantly different compounds, including choline, amino acids, uridine monophosphate, inosine 5'-monophosphate, fructose 1,6-diphosphate, and betaine, suggesting interbreed differences in the accumulation of nucleotide monophosphate, glutathione metabolism, and phospholipid metabolism. Conclusion: Glycolysis, purine metabolism, fatty acid catabolism, and protein degradation were the most common pathways in beef during postmortem aging. The differentially expressed metabolites and the relevant metabolisms in JBRT beef may contribute to the development of a characteristic flavor.

Effect of Temperature Abuse on Quality and Metabolites of Frozen/Thawed Beef Loins

  • Kwon, Jeong A;Yim, Dong-Gyun;Kim, Hyun-Jun;Ismail, Azfar;Kim, Sung-Su;Lee, Hag Ju;Jo, Cheorun
    • Food Science of Animal Resources
    • /
    • v.42 no.2
    • /
    • pp.341-349
    • /
    • 2022
  • The objective of this study was to examine the effect of temperature abuse prior to cold storage on changes in quality and metabolites of frozen/thawed beef loin. The aerobic packaged samples were assigned to three groups: refrigeration (4℃) (CR); freezing (-18℃ for 6 d) and thawing (20±1℃ for 1 d), followed by refrigeration (4℃) (FT); temperature abuse (20℃ for 6 h) prior to freezing (-18℃ for 6 d) and thawing (20±1℃ for 1 d), followed by refrigeration (4℃) (AFT). FT and AFT resulted in higher volatile basic nitrogen (VBN) values than CR (p<0.05), and these values rapidly increased in the final 15 d. Cooking loss decreased significantly with an increase in the storage period (p<0.05). In addition, cooking loss was lower in the FT and AFT groups than in the CR owing to water loss after storage (p<0.05). A scanning electron microscope (SEM) revealed that frozen/thawed beef samples were influenced by temperature abuse in the structure of the fiber at 15 d. Metabolomic analysis showed differences among CR, FT, and AFT from partial least square discriminant analysis (PLS-DA) based on proton nuclear magnetic resonance (1H NMR) profiling. The treatments differed slightly, with higher FT than AFT values in several metabolites (phenylalanine, isoleucine, valine, betaine, and tyrosine). Overall, temperature abuse prior to freezing and during thawing of beef loin resulted in accelerated quality changes.

Nutrikinetic study of fermented soybean paste (Cheonggukjang) isoflavones according to the Sasang typology

  • Kim, Min Jung;Lee, Da-Hye;Ahn, Jiyun;Jang, Young-Jin;Ha, Tae-Youl;Do, Eunju;Jung, Chang Hwa
    • Nutrition Research and Practice
    • /
    • v.14 no.2
    • /
    • pp.102-108
    • /
    • 2020
  • BACKGROUND/OBJECTIVES: In Oriental medicine, certain foods may be beneficial or detrimental based on an individual's constitution; however, the scientific basis for this theory is insufficient. The purpose of this study was to investigate the effect of body constitution, based on the Sasang type of Korean traditional medical classification system, on the bioavailability of soy isoflavones of Cheonggukjang, a quick-fermented soybean paste. SUBJECTS/METHODS: A pilot study was conducted on 48 healthy Korean men to evaluate the bioavailability of isoflavone after ingestion of food based on constitution types classified by the Sasang typology. The participants were classified into the Taeeumin (TE; n = 15), Soyangin (SY; n = 15), and Soeumin (SE; n = 18) groups. Each participant ingested 50 g of Cheonggukjang per 60 kg body weight. Thereafter, blood was collected, and the soy isoflavone metabolites were analyzed by ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry. Ntrikinetic analysis of individual isoflavone-derived metabolites was performed. RESULTS: Our nutrikinetic analysis identified 21 metabolites derived from isoflavones in the blood samples from 48 healthy Korean men (age range, 21-29 years). Significant differences were observed in the time to maximum concentration (Tmax) and elimination half-life (t1/2) for nine metabolites among the three groups. The Tmax and t1/2 of the nine metabolites were higher in the SE group than in the other groups. Moreover, the absorption rates, as determined by the area under the plasma-level curve (AUC) values of intact isoflavone, were 5.3 and 9.4 times higher in the TE group than in the SY and SE groups, respectively. Additionally, the highest AUC values for phase I and II metabolites were observed in the TE group. CONCLUSIONS: These findings indicate that isoflavone bioavailability, following Cheonggukjang insgestion, is high in individuals with the TE constitution, and relatively lower in those with the SE and SY constitutions.

Metabolite Profiling of Serum from Patients with Tuberculosis

  • Park, Hee-Bin;Yoo, Min-Gyu;Choi, Sangho;Kim, Seong-Han;Chu, Hyuk
    • Microbiology and Biotechnology Letters
    • /
    • v.49 no.2
    • /
    • pp.264-268
    • /
    • 2021
  • Tuberculosis (TB) is a major infectious disease that threatens the life and health of people globally. Here, we performed a metabolomic analysis of serum samples from patients with intractable TB to identify biomarkers that might shorten the TB treatment period. Serum samples collected at the commencement of patients' treatment and healthy controls were analyzed using the capillary electrophoresis and time-of-flight mass spectrometry metabolome analysis method. The analysis identified the metabolites cystine, kynurenine, glyceric acid, and cystathionine, which might be useful markers for monitoring the TB treatment course. Furthermore, our research may provide experimental data to develop potential biomarkers in the TB treatment course.

Phytochemical Compounds from the Ethanolic Extract of Gymnema sylvestre, Senna auriculata and Cissus quadrangularis through GC-MS Analysis

  • Sindhuja G;Mary Agnes A
    • Mass Spectrometry Letters
    • /
    • v.14 no.2
    • /
    • pp.25-35
    • /
    • 2023
  • Plants are a traditional source of many chemicals used as biochemical, flavors, food, color, and pharmaceuticals in various countries, especially India. Most herbal medicines and their derivatives are often made from crude extracts containing a complex mixture of various phytochemical chemical components (secondary metabolites of the plants). This study aimed to identify bioactive compounds from the different parts of the plant from the ethanolic extract of Gymnema sylvestre, Senna auriculata, and Cissus quadrangularis (leaves, flower, stem) by gas chromatography-mass spectroscopy (GC-MS). The gas chromatography - mass spectrometry analysis revealed the presence of various compounds like 3,4-dimethylcyclohexanol, hexanoic acid, D-mannose, and N-decanoic acid. Hence, the Gymnema sylvestre, Senna auriculata, and Cissus quadrangularis may have chemopreventive, anti-cancer, anti-microbial activity, antioxidant, anti-diabetic activity, anti-inflammatory, and antifungal due to the presence of secondary metabolites in the ethanolic extract. These phytochemicals are supported for traditional use in a variety of diseases.

LC-MS/MS-based Quantification of Ten Neurotransmitters in Rat Limbic System and Serum: Application to Chronic Unpredictable Mild Stress-Induced Depression Rats

  • Mingyan Ma;Qiangxiang Chen;Wen Cao;Yubo Zhou;Aijuan Yan;Yanru Zhu
    • Mass Spectrometry Letters
    • /
    • v.14 no.3
    • /
    • pp.91-103
    • /
    • 2023
  • As one of the most common mood disorders, numerous studies have shown depression is the main risk factor for non-suicidal self-harm. The pathogenesis of depression is complex, and a comprehensive and rapid measurement of monoamine neurotransmitters and their metabolites will be very helpful in understanding the pathogenesis of depression. Therefore, a rapid and sensitive underivatized liquid chromatography-tandem mass spectrometry method was developed and validated for the simultaneous monitoring of the levels of ten neurotransmitters and their metabolites in rat serum and limbic system and successfully applied to quantify the changes of neurotransmitter levels in chronic unpredictable mild stress-induced rats. The analytes studied were mainly involved in tyrosine metabolism, tryptophan metabolism, and glutamate cycling pathways, which are important in the pathogenesis of depression. It had been verified the method was sensitive and effective, with satisfactory linearity, and met the requirements of biological sample determination. Levels of neurotransmitters in rat serum, hippocampus, amygdala, prefrontal cortex, striatum, and hypothalamus were determined via the method. The results showed serotonin, dopamine, norepinephrine, and their metabolites were decreased, glutamine was increased, and glutamate was disturbed in chronic unpredictable mild stress-induced depression rats. This method provides a new approach to studying the pathogenesis of depression and other neurological disorders.