• Title/Summary/Keyword: metabolic heat

Search Result 134, Processing Time 0.025 seconds

Association of Cold-heat Pattern and Anthropometry/body Composition in Individuals Between 50-80 Years of Age (한열변증과 체형 및 체성분의 연관성 분석 - 50세 이상 장년 및 노년층을 대상으로)

  • Mun, Sujeong;Park, Kihyun;Lee, Siwoo
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.34 no.4
    • /
    • pp.209-214
    • /
    • 2020
  • The association of cold-heat (CH) pattern and anthropometry/body composition has been suggested in that they are related to thermoregulation. We aimed to study the association of CH pattern and anthropometry/body composition. A total of 1479 individuals aged 50-80 years were included in the study, and their CH pattern were evaluated by a self-administered questionnaire. After adjustment for age and sex, the CH score were significantly correlated with weight, BMI (body mass index), body surface area, waist-hip ratio, fat free mass, body fat mass, body cell mass, intracellular water, extracellular water, and basal metabolic rate; however, the correlation coefficients were mostly low (0.15-0.24). The selected variables for predicting CH score were various according to the methods used for variable selection; however, the adjusted R-squared of the final models were all around 0.12. Thus the most parsimonious model could be the one that includes sex and BMI. In conclusion, various anthropometry and body composition indices were associated with CH pattern. Future studies are necessary to improve the performance of the prediction model.

Behavioral and physiological changes during heat stress in Corriedale ewes exposed to water deprivation

  • Nejad, Jalil Ghassemi;Sung, Kyung-Il
    • Journal of Animal Science and Technology
    • /
    • v.59 no.7
    • /
    • pp.13.1-13.6
    • /
    • 2017
  • This study was conducted to investigate the behavioral and physiological changes of heat stressed Corriedale ewes exposed to water deprivation. Nine Corriedale ewes (average $BW=45{\pm}3.7kg$) were individually fed diets based on maintenance requirements in metabolic crates. Ewes were assigned into three groups (9 sheep per treatment) according to a $3{\times}3$ Latin square design for 3 periods with 21-d duration for each period. The control (CON) group was given free access to water, 2 h water deprivation (2hWD), and 3 h water deprivation (3hWD) following feeding. No differences were found in fecal excretion frequency, standing frequency (number/d), and sitting frequency among the groups (p > 0.05). Measurements of standing duration (min/d) and urine excretion frequency (number/d) showed a significant decrease whereas sitting duration (min/d) showed a significant increase in the 2hWD and 3hWD groups when compared with the CON group (p < 0.05). Fecal score and heart rate (number/min) were not different among the groups (p > 0.05). However, respiratory rate (number/min) and panting score were found to be significantly higher in the 2hWD and 3hWD groups than in the CON group (p < 0.05). It is concluded that water deprivation following feeding intensifies physiological heat stress related indicators such as respiratory rate and panting score and changes behavioral parameters such as water intake and urine excretion frequency in heat stressed ewes. Daily adaptation to the extreme environmental conditions may occur actively in ewes.

Effect of BIS depletion on HSF1-dependent transcriptional activation in A549 non-small cell lung cancer cells

  • Yun, Hye Hyeon;Baek, Ji-Ye;Seo, Gwanwoo;Kim, Yong Sam;Ko, Jeong-Heon;Lee, Jeong-Hwa
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.22 no.4
    • /
    • pp.457-465
    • /
    • 2018
  • The expression of BCL-2 interacting cell death suppressor (BIS), an anti-stress or anti-apoptotic protein, has been shown to be regulated at the transcriptional level by heat shock factor 1 (HSF1) upon various stresses. Recently, HSF1 was also shown to bind to BIS, but the significance of these protein-protein interactions on HSF1 activity has not been fully defined. In the present study, we observed that complete depletion of BIS using a CRISPR/Cas9 system in A549 non-small cell lung cancer did not affect the induction of heat shock protein (HSP) 70 and HSP27 mRNAs under various stress conditions such as heat shock, proteotoxic stress, and oxidative stress. The lack of a functional association of BIS with HSF1 activity was also demonstrated by transient downregulation of BIS by siRNA in A549 and U87 glioblastoma cells. Endogenous BIS mRNA levels were significantly suppressed in BIS knockout (KO) A549 cells compared to BIS wild type (WT) A549 cells at the constitutive and inducible levels. The promoter activities of BIS and HSP70 as well as the degradation rate of BIS mRNA were not influenced by depletion of BIS. In addition, the expression levels of the mutant BIS construct, in which 14 bp were deleted as in BIS-KO A549 cells, were not different from those of the WT BIS construct, indicating that mRNA stability was not the mechanism for autoregulation of BIS. Our results suggested that BIS was not required for HSF1 activity, but was required for its own expression, which involved an HSF1-independent pathway.

Adhesion of biofilm, surface characteristics, and mechanical properties of antimicrobial denture base resin

  • Ana Beatriz Vilela Teixeira;Mariana Lima da Costa Valente;Joao Pedro Nunes Sessa;Bruna Gubitoso;Marco Antonio Schiavon;Andrea Candido dos Reis
    • The Journal of Advanced Prosthodontics
    • /
    • v.15 no.2
    • /
    • pp.80-92
    • /
    • 2023
  • PURPOSE. This study incorporated the nanomaterial, nanostructured silver vanadate decorated with silver nanoparticles (AgVO3), into heat-cured resin (HT) at concentrations of 2.5%, 5%, and 10% and compared the adhesion of multispecies biofilms, surface characteristics, and mechanical properties with conventional heat-cured (HT 0%) and printed resins. MATERIALS AND METHODS. AgVO3 was incorporated in mass into HT powder. A denture base resin was used to obtain printed samples. Adhesion of a multispecies biofilm of Candida albicans, Candida glabrata, and Streptococcus mutans was evaluated by colony-forming units per milliliter (CFU/mL) and metabolic activity. Wettability, roughness, and scanning electron microscopy (SEM) were used to assess the physical characteristics of the surface. The mechanical properties of flexural strength and elastic modulus were tested. RESULTS. HT 10%-AgVO3 showed efficacy against S. mutans; however, it favored C. albicans CFU/mL (P < .05). The printed resin showed a higher metabolically active biofilm than HT 0% (P < .05). There was no difference in wettability or roughness between groups (P > .05). Irregularities on the printed resin surface and pores in HT 5%-AgVO3 were observed by SEM. HT 0% showed the highest flexural strength, and the resins incorporated with AgVO3 had the highest elastic modulus (P < .05). CONCLUSION. The incorporation of 10% AgVO3 into heat-cured resin provided antimicrobial activity against S. mutans in a multispecies biofilm did not affect the roughness or wettability but reduced flexural strength and increased elastic modulus. Printed resin showed higher irregularity, an active biofilm, and lower flexural strength and elastic modulus than heat-cured resin.

Subjective Responses to Thermal Stress for the Outdoor Performance of Smart Clothes

  • Kwon, JuYoun;Parsons, Ken
    • Journal of the Ergonomics Society of Korea
    • /
    • v.36 no.3
    • /
    • pp.169-181
    • /
    • 2017
  • Objective: The aim of this study was to explore the influence of outdoor weather conditions on subjective responses during physical activity. Background: The largest difference between indoor and outdoor conditions is the existence of the sun. The heat load from the sun has an influence on the heat gain of the human body and the intense degree of solar radiation affected thermal comfort. Method: Thirty eight people were exposed to a range of climatic conditions in the UK. Weather in England does not have extremely hot and cold temperature, and the current study was conducted under warm (summer and autumn) and cool (spring and summer) climates. Measurements of the climate included air temperature, radiant temperature (including solar load), humidity and wind around the subjects. Subjective responses were taken and physiological measurements included internal body temperature, heart rate and sweat loss. Results: This study was conducted under four kinds of environmental conditions and the environmental measurement was performed in September, December, March, and June. The values for sensation, comfort, preference, and pleasantness about four conditions were from 'neutral' to 'warm', from 'not uncomfortable' to 'slightly comfortable', from 'slightly cooler' to 'slightly warmer', and from 'neither pleasant nor unpleasant' and 'slightly unpleasant', respectively. All subjective responses showed differences depending on air temperature and wind speed, and had correlations with air temperature and wind speed (p<0.05). However, subjective responses showed no differences depending on the radiant temperature. The combined effects of environmental parameters were showed on some subjective responses. The combined effects of air temperature and radiant temperature on thermal sensation and pleasantness were significant. The combined effects of metabolic rate with air temperature, wind speed and solar radiation respectively have influences on some subjective responses. In the case of the relationships among subjective responses, thermal sensation had significant correlations with all subjective responses. The largest relationship was shown between preference and thermal sensation but acceptance showed the lowest relationship with the other subjective responses. Conclusion: The ranges of air temperature, radiant temperature, wind speed and solar radiation were $6.7^{\circ}C$ to $24.7^{\circ}C$, $17.9^{\circ}C$ to $56.6^{\circ}C$, $0.84ms^{-1}$ to $2.4ms^{-1}$, and $123Wm^{-2}$ to $876Wm^{-2}$ respectively. Each of air temperature and wind speed had significant relationships with subjective responses. The combined effects of environmental parameters on subjective responses were shown. Each radiant temperature and solar radiation did not show any relationships with subjective responses but the combinations of each radiant temperature and solar radiation with other environmental parameters had influences on subjective responses. The combinations of metabolic rate with air temperature, wind speed and solar radiation respectively have influences on subjective responses although metabolic rate alone hardly made influences on them. There were also significant relationships among subjective responses, and pleasantness generally showed relatively high relationships with comfort, preference, acceptance and satisfaction. Application: Subjective responses might be utilized to predict thermal stress of human and the application products reflecting human subjective responses might apply to the different fields such as fashion technology, wearable devices, and environmental design considering human's response etc.

Anti-proliferative Effects of Celastrol, A Quinine Methide Triterpene Extracted from the Perennial Vine Tripterygium wilfordii, on Obesity-related Cancers (미역줄나무 뿌리 추출물인 셀라스트롤의 비만관련 암증식 억제효과)

  • Park, Sunmi;Moon, Hyun-Seuk
    • Journal of Food Hygiene and Safety
    • /
    • v.31 no.1
    • /
    • pp.59-66
    • /
    • 2016
  • It has been generally accepted that obesity and overweight are associated with metabolic diseases and cancer incidence. In fact, obesity increased risks of cancers i.e. breast, liver, pancreatic and prostate. Celastrol is a pentacyclic triterpenoid isolated from Thunder god vine, was used as a Chinese traditional medicine for treatment of inflammatory disorders such as arthritis, lupus erythematosus and Alzheimer's disease. Also, celastrol has various biological properties of chemo-preventive, neuro-protective, and anti-oxidant effects. Recent studies demonstrated that celastrol has anti-proliferation effects in different type of obesity-related cancers and suppresses tumor progression and metastasis. Anticancer effects of celastrol include regulation of $NF-{\kappa}B$, heat shock protein, JNK, VEGF, CXCR4, Akt/mTOR, MMP-9 and so on. For these reasons, celastrol has shown to be a promising anti-tumor agent. In this review, we will address the anticancer activities and multiple mechanisms of celastrol in obesity-related cancers.

Energy Requirements of Growing Hanwoo Bulls for Maintenance by Fasting Metabolism (절식대사 시험에 의한 한우 수소의 유지에너지 요구량 결정에 관한 연구)

  • Lee, S. C.;Thak, T. Y.;Kim, K. H.;Yoon, S. G.
    • Journal of Animal Science and Technology
    • /
    • v.45 no.1
    • /
    • pp.113-122
    • /
    • 2003
  • Net and metabolizable energy requirements for maintenance of Hanwoo (Korean native cattle) bulls were estimated in twenty-eight fasting metabolism trials using seven different feeds at four stages of body weight(100, 200, 300 and 400kg). Three cattle for each of twenty-eight trials fed at a level of maintenance energy requirement were housed in metabolic stalls during the 5 days of collection period. Thereafter, during the 2 days of respiration period the heat production was measured by indirect calorimetry using respiratory chamber. After finishing the respiratory metabolism trials under the maintenance level, experimental animals were fasted for 5 days and were measured heat production by indirect calorimetry using respiratory chamber. Seven different feeds were: 1) mixed ration of concentrate and rice straw, 2) mixed ration of concentrate and mixed grass hay, 3) mixed ration of concentrate and corn silage, 4) rice straw alone, 5) mixed grass hay alone, 6) corn silage alone, 7) concentrate alone. Fasting heat production were 66.05/$W^{0.75}$ at 100kg of body weight and 60~63kcal/$W^{0.75}$ at 200~400kg of body weight. When subtracting heat loss by muscular work from the fasting heat production, basal metabolic rate was 55.92kcal/$W^{0.75}$. The average values of NEm requirements were obtained by adding urinary energy excretion to the basal metabolic rates were 69.1, 62.1, 65.8 and 64.4kcal/$W^{0.75}$ for the four stages of body weight, respectively. The ME requirement for maintenance could be calculated using retained energy and the efficiency of utilization of ME for net energy. The ME requirement for maintenance thus obtained was 102.69kcal/$W^{0.75}$.

A Study on Sasang Constitution Discrimination Using Body Biomarkers - Based on Korean Medicine Cohort Study (신체 생체 지표를 이용한 사상체질 판별 연구 - 한의 코호트 연구를 중심으로)

  • Park, Jeong-Su;Sung, Hyun Kyung;Shin, Seon Mi;Go, Ho-Yeon;Lee, Si-Woo;Baek, Younghwa
    • Journal of Society of Preventive Korean Medicine
    • /
    • v.23 no.3
    • /
    • pp.21-30
    • /
    • 2019
  • Objective : The study aimed to report the results of workplace-based Korean Medicine cohort, The cohort collected the health information including physical measurements, questionnaires, and biomarkers. Method : This study was conducted on 200 faculty members of two hospitals and two universities in 2017 through 2018. The study analyzed physical measurement, cold-heat questionnaire, body compositions and pulse characteristics. Result : The heat-cold score, waist circumference, visceral fat area, and body water were different according to the Sasang constitution, in order of Taeum > Soyang > Soeum. The pulse energy difference was shown only in women. Conclusion : There were differences in body composition such as heat point, waist circumference, internal fat area and body water content by constitution, and also difference by body mass in total energy in pulse examination. It is believed that there were significant relation between physical, physical and energy metabolic aspects through Sasang constitution.

EFFECTS OF NICARBAZIN AND HOT TEMPERATURE ON EVAPORATIVE WATER LOSS, ACID-BASE BALANCE, BODY TEMPERATURE AND CARBON DIOXIDE EXHALATION IN ADULT ROOSTERS

  • Lee, B.D.;Lee, S.K.;Hyun, W.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.7 no.1
    • /
    • pp.97-101
    • /
    • 1994
  • Two experiments were conducted to study the effect of ambient temperature and nicarbazin on SCWL adult roosters. In Experiment 1, the effects of nicarbazin supplementation (125 ppm) on the water metabolism, blood acid-base balance; and rectal temperature of 16 birds in normal ($21^{\circ}C$) and hot ($35-36^{\circ}C$) temperature were investigated. In Experiment 2, the evaporative water loss and $CO_2$ exhalation from 8 birds were measured individually with an open-circuit gravimetric respiration apparatus in normal ($21^{\circ}C$) and hot ($33.5-34^{\circ}C$) temperature. The amount of water intake and evaporative water loss increased in birds under heat stress (HS). Nicarbazin exacerbated these effect in hot temperature. Also, nicarbazin decreased the blood $pCO_2$ and increased pH of HS birds. The rectal temperature of birds increased in hot temperature, and nicarbazin worsened this effect. The evaporative water loss, measured directly with respiration apparatus (Experiment 2), was increased in hot temperature. HS decreased the amount of $CO_2$ exhalation. Nicarbazin did not exert ant effect on either of these measurements, probably due to the limited duration (2 h) of the trial. The decrease in $CO_2$ exhalation by HS birds could be explained by reduced metabolic rate, which helps homeothermy of birds in hot temperature.

Energy Metabolism and Protein Utilization in Chicken- A Review

  • Kim, Ji-Hyuk
    • Korean Journal of Poultry Science
    • /
    • v.41 no.4
    • /
    • pp.313-322
    • /
    • 2014
  • Evaluation of energy in the diet is very important in animal nutrition because food intake is strongly influenced by the energy content of the diet. This means that the intake of other nutrients, such as amino acids, is affected by their ratio to energy content. Poultry can control their energy intake over a range of energy: protein ratios. Energy: protein ratio also affects the growth and body composition. Therefore we need to know what extent the relationship between energy and dietary protein influences the bird's performance. To predict the energy value of the diet or its chemical constituents, researchers have been working on modelling using the equations of the major biochemical pathways in terms of ATP generation and utilization. The activity of feeding and the metabolism caused by digestion and assimilation of food increase the animal's heat production and it can be measured by calorimetry technique. Theoretically, surplus amino acids which are not needed for protein synthesis stimulate an additional increase in metabolic rate and lead to increased energetic costs of catabolism and excretion. However, it has sometimes been shown that there was no measurable diet-induced thermoregulatory effect when an imbalanced amino acid mixture was fed. All these aspects are discussed in this review.