DOI QR코드

DOI QR Code

Anti-proliferative Effects of Celastrol, A Quinine Methide Triterpene Extracted from the Perennial Vine Tripterygium wilfordii, on Obesity-related Cancers

미역줄나무 뿌리 추출물인 셀라스트롤의 비만관련 암증식 억제효과

  • Park, Sunmi (Laboratory of Metabolic Engineering, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University) ;
  • Moon, Hyun-Seuk (Laboratory of Metabolic Engineering, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University)
  • 박선미 (고려대학교 생명과학대학 생명공학부 대사공학연구실) ;
  • 문현석 (고려대학교 생명과학대학 생명공학부 대사공학연구실)
  • Received : 2016.01.26
  • Accepted : 2016.01.29
  • Published : 2016.02.28

Abstract

It has been generally accepted that obesity and overweight are associated with metabolic diseases and cancer incidence. In fact, obesity increased risks of cancers i.e. breast, liver, pancreatic and prostate. Celastrol is a pentacyclic triterpenoid isolated from Thunder god vine, was used as a Chinese traditional medicine for treatment of inflammatory disorders such as arthritis, lupus erythematosus and Alzheimer's disease. Also, celastrol has various biological properties of chemo-preventive, neuro-protective, and anti-oxidant effects. Recent studies demonstrated that celastrol has anti-proliferation effects in different type of obesity-related cancers and suppresses tumor progression and metastasis. Anticancer effects of celastrol include regulation of $NF-{\kappa}B$, heat shock protein, JNK, VEGF, CXCR4, Akt/mTOR, MMP-9 and so on. For these reasons, celastrol has shown to be a promising anti-tumor agent. In this review, we will address the anticancer activities and multiple mechanisms of celastrol in obesity-related cancers.

Celastrol은 미역줄나무의 뿌리에서 얻은 추출물로 오래전부터 관절염 및 자가면역 같은 염증반응 질병들을 치료하기 위하여 쓰여져 왔다. 이외에도 많은 연구들에서 celastrol이 신경보호, 항산화 및 알츠하이머 치료에 사용될 수 있으며 특히, 암 치료에 효과적이라고 밝혀 졌다(Table 1). 따라서 많은 연구자들이 생리학적, 생화학적 및 면역학적 관점에서 celastrol의 항암효과를 규명하고자 노력을 기울이고 있으며, 다양한 관점에서 신호전달체계를 조절한다는 사실을 밝혀냈다(Fig. 1). 특히, celastrol은 $NF-{\kappa}B$를 억제함으로서 암의 발달 및 전이를 저해함을 물론, 암의 치료에 동반되는 면역 반응을 조절 할 수 있다(Fig. 2). 또한 세포사멸과 관계된 유전자들을 활성화 시키고, 항세포사멸 유전자들을 억제시킴으로서 세포 주기를 조절한다. 유전자 조절 외에도 heat shock protein과 같은 단백질의 변조와 자가소화작용(autophagy)를 유도한다. 이처럼 celastrol의 다양한 효과는 암의 성공적 치료에 한발 더 가까워지게 만든다. 이외에도 celastrol의 항 비만 효과가 알려지면서 향후 비만 및 비만과 연계된 암 환자들이 가질 수 있는 부작용, 오남용 및 비용절감 측면에서 좋은 결과를 나타낼 것이라 예상 된다. Celastrol의 다양한 기작이 밝혀짐에도 불구 하고 직접적인 결합 부위에 대한 연구 결과는 아직 없으며, 임상적용 하기에 앞서 다양한 동물모델 in vivo 실험이 필요하다. 또한 임상치료 시도에 있어 안전성을 확보 하기 위해서는 celastrol의 단기간 및 장기간의 효과에 대한 깊은 연구가 요구된다.

Keywords

References

  1. Johnson, R.J., Nakagawa, T., Sanchez-Lozada, L.G., Shafiu, M., Sundaram, S., Le, M., Ishimoto, T., Sautin, Y.Y. & Lanaspa, M.A. Sugar, uric acid, and the etiology of diabetes and obesity. Diabetes, 62, 3307-3315 (2013). https://doi.org/10.2337/db12-1814
  2. Nimptsch, K. & Pischon, T. Body fatness, related biomarkers and cancer risk: an epidemiological perspective. Hormone molecular biology and clinical investigation, 22, 39-51 (2015).
  3. Aguilar Cordero, M.J., Gonzalez Jimenez, E., Garcia Lopez, A.P., Alvarez Ferre, J., Padilla Lopez, C.A., Guisado Barrilao, R. & Rizo Baeza, M. [Obesity and its implication in breast cancer]. Nutricion hospitalaria, 26, 899-903 (2011).
  4. Olivo-Marston, S.E., Hursting, S.D., Perkins, S.N., Schetter, A., Khan, M., Croce, C., Harris, C.C. & Lavigne, J. Effects of calorie restriction and diet-induced obesity on murine colon carcinogenesis, growth and inflammatory factors, and microRNA expression. PloS one, 9, e94765 (2014). https://doi.org/10.1371/journal.pone.0094765
  5. Popovic, M.D., Banicevic, A.C., Popovic, B., Ceric, A., Banicevic, A. & Popadic, D. Treatment of endometrial cancer in patient with malignant obesity. Medical archives, 68, 69-70 (2014). https://doi.org/10.5455/medarh.2014.68.69-70
  6. Sanfilippo, K.M., McTigue, K.M., Fidler, C.J., Neaton, J.D., Chang, Y., Fried, L.F., Liu, S. & Kuller, L.H. Hypertension and obesity and the risk of kidney cancer in 2 large cohorts of US men and women. Hypertension, 63, 934-941 (2014). https://doi.org/10.1161/HYPERTENSIONAHA.113.02953
  7. Preziosi, G., Oben, J.A. & Fusai, G. Obesity and pancreatic cancer. Surgical oncology, 23, 61-71 (2014). https://doi.org/10.1016/j.suronc.2014.02.003
  8. Yang, H., Chen, D., Cui, Q.C., Yuan, X. & Dou, Q.P. Celastrol, a triterpene extracted from the Chinese "Thunder of God Vine," is a potent proteasome inhibitor and suppresses human prostate cancer growth in nude mice. Cancer research, 66, 4758-4765 (2006). https://doi.org/10.1158/0008-5472.CAN-05-4529
  9. Salminen, A., Lehtonen, M., Paimela, T. & Kaarniranta, K. Celastrol: Molecular targets of Thunder God Vine. Biochemical and biophysical research communications, 394, 439-442 (2010). https://doi.org/10.1016/j.bbrc.2010.03.050
  10. Kim, D.H., Shin, E.K., Kim, Y.H., Lee, B.W., Jun, J.G., Park, J.H. & Kim, J.K. Suppression of inflammatory responses by celastrol, a quinone methide triterpenoid isolated from Celastrus regelii. European journal of clinical investigation, 39, 819-827 (2009). https://doi.org/10.1111/j.1365-2362.2009.02186.x
  11. Tao, X., Younger, J., Fan, F.Z., Wang, B. & Lipsky, P.E. Benefit of an extract of Tripterygium Wilfordii Hook F in patients with rheumatoid arthritis: a double-blind, placebo-controlled study. Arthritis and rheumatism, 46, 1735-1743 (2002). https://doi.org/10.1002/art.10411
  12. Shrivastava, S., Jeengar, M.K., Reddy, V.S., Reddy, G.B. & Naidu, V.G. Anticancer effect of celastrol on human triple negative breast cancer: possible involvement of oxidative stress, mitochondrial dysfunction, apoptosis and PI3K/Akt pathways. Experimental and molecular pathology, 98, 313-327 (2015). https://doi.org/10.1016/j.yexmp.2015.03.031
  13. Kannaiyan, R., Shanmugam, M.K. & Sethi, G. Molecular targets of celastrol derived from Thunder of God Vine: potential role in the treatment of inflammatory disorders and cancer. Cancer letters, 303, 9-20 (2011). https://doi.org/10.1016/j.canlet.2010.10.025
  14. Yadav, V.R., Sung, B., Prasad, S., Kannappan, R., Cho, S.G., Liu, M., Chaturvedi, M.M. & Aggarwal, B.B. Celastrol suppresses invasion of colon and pancreatic cancer cells through the downregulation of expression of CXCR4 chemokine receptor. Journal of molecular medicine, 88, 1243-1253 (2010). https://doi.org/10.1007/s00109-010-0669-3
  15. Dai, Y., Desano, J., Tang, W., Meng, X., Meng, Y., Burstein, E., Lawrence, T.S. & Xu, L. Natural proteasome inhibitor celastrol suppresses androgen-independent prostate cancer progression by modulating apoptotic proteins and NF-kappaB. PloS one, 5, e14153 (2010). https://doi.org/10.1371/journal.pone.0014153
  16. Kim, Y., Kang, H., Jang, S.W. & Ko, J. Celastrol inhibits breast cancer cell invasion via suppression of NF-${\kappa}B$-mediated matrix metalloproteinase-9 expression. Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology, 28, 175-184 (2011). https://doi.org/10.1159/000331729
  17. Li, H.Y., Zhang, J., Sun, L.L., Li, B.H., Gao, H.L., Xie, T., Zhang, N. & Ye, Z.M. Celastrol induces apoptosis and autophagy via the ROS/JNK signaling pathway in human osteosarcoma cells: an in vitro and in vivo study. Cell death & disease, 6, e1604 (2015). https://doi.org/10.1038/cddis.2014.543
  18. Greenhill, C. Celastrol identified as a leptin sensitizer and potential novel treatment for obesity. Nature reviews. Endocrinology, 11, 444 (2015).
  19. Woods, R.W., Sisney, G.S., Salkowski, L.R., Shinki, K., Lin, Y. & Burnside, E.S. The mammographic density of a mass is a significant predictor of breast cancer. Radiology, 258, 417- 425 (2011). https://doi.org/10.1148/radiol.10100328
  20. van de Ven, S., Smit, V.T., Dekker, T.J., Nortier, J.W. & Kroep, J.R. Discordances in ER, PR and HER2 receptors after neoadjuvant chemotherapy in breast cancer. Cancer treatment reviews, 37, 422-430 (2011).
  21. Park, Y.J., Ryu, J.W Chemosensitivity test in human breast cancer. Journal of The Korean Surgical Society, 62, 26-29 (2002).
  22. Lee, J.H., Koo, T.H., Yoon, H., Jung, H.S., Jin, H.Z., Lee, K., Hong, Y.S. & Lee, J.J. Inhibition of NF-kappa B activation through targeting I kappa B kinase by celastrol, a quinone methide triterpenoid. Biochemical pharmacology, 72, 1311- 1321 (2006). https://doi.org/10.1016/j.bcp.2006.08.014
  23. Kim, J.H., Lee, J.O., Lee, S.K., Kim, N., You, G.Y., Moon, J.W., Sha, J., Kim, S.J., Park, S.H. & Kim, H.S. Celastrol suppresses breast cancer MCF-7 cell viability via the AMP-activated protein kinase (AMPK)-induced p53-polo like kinase 2 (PLK-2) pathway. Cellular signalling, 25, 805-813 (2013). https://doi.org/10.1016/j.cellsig.2012.12.005
  24. Baldi, A., De Luca, A., Esposito, V., Campioni, M., Spugnini, E.P. & Citro, G. Tumor suppressors and cell-cycle proteins in lung cancer. Pathology research international, 2011, 605042 (2011).
  25. Yang, H.S., Kim, J.Y., Lee, J.H., Lee, B.W., Park, K.H., Shim, K.H., Lee, M.K. & Seo, K.I. Celastrol isolated from Tripterygium regelii induces apoptosis through both caspasedependent and -independent pathways in human breast cancer cells. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association, 49, 527-532 (2011). https://doi.org/10.1016/j.fct.2010.11.044
  26. Adams, J.M. Ways of dying: multiple pathways to apoptosis. Genes & development, 17, 2481-2495 (2003). https://doi.org/10.1101/gad.1126903
  27. Woessner, J.F., Jr. Matrix metalloproteinases and their inhibitors in connective tissue remodeling. FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 5, 2145-2154 (1991). https://doi.org/10.1096/fasebj.5.8.1850705
  28. Scorilas, A., Karameris, A., Arnogiannaki, N., Ardavanis, A., Bassilopoulos, P., Trangas, T. & Talieri, M. Overexpression of matrix-metalloproteinase-9 in human breast cancer: a potential favourable indicator in node-negative patients. British journal of cancer, 84, 1488-1496 (2001). https://doi.org/10.1054/bjoc.2001.1810
  29. Mi, C., Shi, H., Ma, J., Han, L.Z., Lee, J.J. & Jin, X. Celastrol induces the apoptosis of breast cancer cells and inhibits their invasion via downregulation of MMP-9. Oncology reports, 32, 2527-2532 (2014). https://doi.org/10.3892/or.2014.3535
  30. Key, T., Appleby, P., Barnes, I., Reeves, G., Endogenous, H. & Breast Cancer Collaborative, G. Endogenous sex hormones and breast cancer in postmenopausal women: reanalysis of nine prospective studies. Journal of the National Cancer Institute, 94, 606-616 (2002). https://doi.org/10.1093/jnci/94.8.606
  31. Katzenellenbogen, B.S. & Katzenellenbogen, J.A. Estrogen receptor transcription and transactivation: Estrogen receptor alpha and estrogen receptor beta: regulation by selective estrogen receptor modulators and importance in breast cancer. Breast cancer research : BCR, 2, 335-344 (2000). https://doi.org/10.1186/bcr78
  32. Liedtke, C., Broglio, K., Moulder, S., Hsu, L., Kau, S.W., Symmans, W.F., Albarracin, C., Meric-Bernstam, F., Woodward, W., Theriault, R.L., Kiesel, L., Hortobagyi, G.N., Pusztai, L. & Gonzalez-Angulo, A.M. Prognostic impact of discordance between triple-receptor measurements in primary and recurrent breast cancer. Annals of oncology : official journal of the European Society for Medical Oncology / ESMO, 20, 1953-1958 (2009). https://doi.org/10.1093/annonc/mdp263
  33. Normanno, N., Di Maio, M., De Maio, E., De Luca, A., de Matteis, A., Giordano, A., Perrone, F. & Group, N.C.-N.B.C. Mechanisms of endocrine resistance and novel therapeutic strategies in breast cancer. Endocrine-related cancer, 12, 721-747 (2005). https://doi.org/10.1677/erc.1.00857
  34. Carpizo, D.R. & D'Angelica, M. Liver resection for metastatic colorectal cancer in the presence of extrahepatic disease. The Lancet. Oncology, 10, 801-809 (2009). https://doi.org/10.1016/S1470-2045(09)70081-6
  35. Yau, T., Chan, P., Epstein, R. & Poon, R.T. Management of advanced hepatocellular carcinoma in the era of targeted therapy. Liver international : official journal of the International Association for the Study of the Liver, 29, 10-17 (2009). https://doi.org/10.1111/j.1478-3231.2008.01916.x
  36. Tanaka, M., Katayama, F., Kato, H., Tanaka, H., Wang, J., Qiao, Y.L. & Inoue, M. Hepatitis B and C virus infection and hepatocellular carcinoma in China: a review of epidemiology and control measures. Journal of epidemiology / Japan Epidemiological Association, 21, 401-416 (2011). https://doi.org/10.2188/jea.JE20100190
  37. Jemal, A., Bray, F., Center, M.M., Ferlay, J., Ward, E. & Forman, D. Global cancer statistics. CA: a cancer journal for clinicians, 61, 69-90 (2011). https://doi.org/10.3322/caac.20107
  38. Li, P.P., He, W., Yuan, P.F., Song, S.S., Lu, J.T. & Wei, W. Celastrol induces mitochondria-mediated apoptosis in hepatocellular carcinoma Bel-7402 cells. The American journal of Chinese medicine, 43, 137-148 (2015). https://doi.org/10.1142/S0192415X15500093
  39. Kannaiyan, R., Manu, K.A., Chen, L., Li, F., Rajendran, P., Subramaniam, A., Lam, P., Kumar, A.P. & Sethi, G. Celastrol inhibits tumor cell proliferation and promotes apoptosis through the activation of c-Jun N-terminal kinase and suppression of PI3 K/Akt signaling pathways. Apoptosis : an international journal on programmed cell death, 16, 1028-1041 (2011). https://doi.org/10.1007/s10495-011-0629-6
  40. Jiang, H.L., Jin, J.Z., Wu, D., Xu, D., Lin, G.F., Yu, H., Ma, D.Y. & Liang, J. Celastrol exerts synergistic effects with PHA-665752 and inhibits tumor growth of c-Met-deficient hepatocellular carcinoma in vivo. Molecular biology reports, 40, 4203-4209 (2013). https://doi.org/10.1007/s11033-013-2501-y
  41. Ihle, J.N. STATs: signal transducers and activators of transcription. Cell, 84, 331-334 (1996). https://doi.org/10.1016/S0092-8674(00)81277-5
  42. Yue, P. & Turkson, J. Targeting STAT3 in cancer: how successful are we? Expert opinion on investigational drugs, 18, 45-56 (2009). https://doi.org/10.1517/13543780802565791
  43. Rajendran, P., Li, F., Shanmugam, M.K., Kannaiyan, R., Goh, J.N., Wong, K.F., Wang, W., Khin, E., Tergaonkar, V., Kumar, A.P., Luk, J.M. & Sethi, G. Celastrol suppresses growth and induces apoptosis of human hepatocellular carcinoma through the modulation of STAT3/JAK2 signaling cascade in vitro and in vivo. Cancer prevention research, 5, 631- 643 (2012). https://doi.org/10.1158/1940-6207.CAPR-11-0420
  44. Varfolomeev, E.E. & Ashkenazi, A. Tumor necrosis factor: an apoptosis JuNKie? Cell, 116, 491-497 (2004). https://doi.org/10.1016/S0092-8674(04)00166-7
  45. Johnson, G.L. & Nakamura, K. The c-jun kinase/stress-activated pathway: regulation, function and role in human disease. Biochimica et biophysica acta, 1773, 1341-1348 (2007). https://doi.org/10.1016/j.bbamcr.2006.12.009
  46. Ma, J., Han, L.Z., Liang, H., Mi, C., Shi, H., Lee, J.J. & Jin, X. Celastrol inhibits the HIF-1alpha pathway by inhibition of mTOR/p70S6K/eIF4E and ERK1/2 phosphorylation in human hepatoma cells. Oncology reports, 32, 235-242 (2014). https://doi.org/10.3892/or.2014.3211
  47. Khan, M.L., Halfdanarson, T.R. & Borad, M.J. Immunotherapeutic and oncolytic viral therapeutic strategies in pancreatic cancer. Future oncology, 10, 1255-1275 (2014). https://doi.org/10.2217/fon.13.277
  48. Shimoda, M., Katoh, M., Kita, J., Sawada, T. & Kubota, K. The Glasgow Prognostic Score is a good predictor of treatment outcome in patients with unresectable pancreatic cancer. Chemotherapy, 56, 501-506 (2010). https://doi.org/10.1159/000321014
  49. Xia, Q.S., Ishigaki, Y., Zhao, X., Shimasaki, T., Nakajima, H., Nakagawa, H., Takegami, T., Chen, Z.H. & Motoo, Y. Human SMG-1 is involved in gemcitabine-induced primary microRNA-155/BIC up-regulation in human pancreatic cancer PANC-1 cells. Pancreas, 40, 55-60 (2011). https://doi.org/10.1097/MPA.0b013e3181e89f74
  50. Neckers, L. Hsp90 inhibitors as novel cancer chemotherapeutic agents. Trends in molecular medicine, 8, S55-61 (2002). https://doi.org/10.1016/S1471-4914(02)02316-X
  51. Kamal, A., Boehm, M.F. & Burrows, F.J. Therapeutic and diagnostic implications of Hsp90 activation. Trends in molecular medicine, 10, 283-290 (2004). https://doi.org/10.1016/j.molmed.2004.04.006
  52. Zhang, T., Hamza, A., Cao, X., Wang, B., Yu, S., Zhan, C.G. & Sun, D. A novel Hsp90 inhibitor to disrupt Hsp90/Cdc37 complex against pancreatic cancer cells. Molecular cancer therapeutics, 7, 162-170 (2008). https://doi.org/10.1158/1535-7163.MCT-07-0484
  53. Muller, A., Homey, B., Soto, H., Ge, N., Catron, D., Buchanan, M.E., McClanahan, T., Murphy, E., Yuan, W., Wagner, S.N., Barrera, J.L., Mohar, A., Verastegui, E. & Zlotnik, A. Involvement of chemokine receptors in breast cancer metastasis. Nature, 410, 50-56 (2001). https://doi.org/10.1038/35065016
  54. Marchese, A. & Benovic, J.L. Agonist-promoted ubiquitination of the G protein-coupled receptor CXCR4 mediates lysosomal sorting. The Journal of biological chemistry, 276, 45509-45512 (2001). https://doi.org/10.1074/jbc.C100527200
  55. Bhandari, D., Trejo, J., Benovic, J.L. & Marchese, A. Arrestin- 2 interacts with the ubiquitin-protein isopeptide ligase atrophin-interacting protein 4 and mediates endosomal sorting of the chemokine receptor CXCR4. The Journal of biological chemistry, 282, 36971-36979 (2007). https://doi.org/10.1074/jbc.M705085200
  56. Siegel, R., Naishadham, D. & Jemal, A. Cancer statistics, 2012. CA: a cancer journal for clinicians, 62, 10-29 (2012). https://doi.org/10.3322/caac.20138
  57. Lee, G.H., Park, J. A., Kim, B. R., Cinn. Y. W., Yoon, C. Y., Yoon, D.K Polymorphism of Androgen Receptor in Korean Men with Prostate Cancer. Korean Urological Association, 6, 561-564 (2005).
  58. Han, M., Partin, A.W., Pound, C.R., Epstein, J.I. & Walsh, P.C. Long-term biochemical disease-free and cancer-specific survival following anatomic radical retropubic prostatectomy. The 15-year Johns Hopkins experience. The Urologic clinics of North America, 28, 555-565 (2001). https://doi.org/10.1016/S0094-0143(05)70163-4
  59. D'Amico, A.V., Cote, K., Loffredo, M., Renshaw, A.A. & Schultz, D. Determinants of prostate cancer-specific survival after radiation therapy for patients with clinically localized prostate cancer. Journal of clinical oncology : official journal of the American Society of Clinical Oncology, 20, 4567-4573 (2002). https://doi.org/10.1200/JCO.2002.03.061
  60. Cao, L., Zhang, X., Cao, F., Wang, Y., Shen, Y., Yang, C., Uzan, G., Peng, B. & Zhang, D. Inhibiting inducible miR-223 further reduces viable cells in human cancer cell lines MCF- 7 and PC3 treated by celastrol. BMC cancer, 15, 873 (2015). https://doi.org/10.1186/s12885-015-1909-2
  61. Guo, J., Huang, X., Wang, H. & Yang, H. Celastrol Induces Autophagy by Targeting AR/miR-101 in Prostate Cancer Cells. PloS one, 10, e0140745 (2015). https://doi.org/10.1371/journal.pone.0140745
  62. Shao, L., Zhou, Z., Cai, Y., Castro, P., Dakhov, O., Shi, P., Bai, Y., Ji, H., Shen, W. & Wang, J. Celastrol suppresses tumor cell growth through targeting an AR-ERG-NF-kappaB pathway in TMPRSS2/ERG fusion gene expressing prostate cancer. PloS one, 8, e58391 (2013). https://doi.org/10.1371/journal.pone.0058391
  63. Chiang, K.C., Tsui, K.H., Chung, L.C., Yeh, C.N., Chen, W.T., Chang, P.L. & Juang, H.H. Celastrol blocks interleukin-6 gene expression via downregulation of NF-kappaB in prostate carcinoma cells. PloS one, 9, e93151 (2014). https://doi.org/10.1371/journal.pone.0093151
  64. Ji, N., Li, J., Wei, Z., Kong, F., Jin, H., Chen, X., Li, Y. & Deng, Y. Effect of celastrol on growth inhibition of prostate cancer cells through the regulation of hERG channel in vitro. BioMed research international, 2015, 308475 (2015).
  65. Staudacher, I., Wang, L., Wan, X., Obers, S., Wenzel, W., Tristram, F., Koschny, R., Staudacher, K., Kisselbach, J., Koelsch, P., Schweizer, P.A., Katus, H.A., Ficker, E. & Thomas, D. hERG K+ channel-associated cardiac effects of the antidepressant drug desipramine. Naunyn-Schmiedeberg's archives of pharmacology, 383, 119-139 (2011). https://doi.org/10.1007/s00210-010-0583-9
  66. Wolfram, J., Suri, K., Huang, Y., Molinaro, R., Borsoi, C., Scott, B., Boom, K., Paolino, D., Fresta, M., Wang, J., Ferrari, M., Celia, C. & Shen, H. Evaluation of anticancer activity of celastrol liposomes in prostate cancer cells. Journal of microencapsulation, 31, 501-507 (2014). https://doi.org/10.3109/02652048.2013.879932

Cited by

  1. Anti-proliferation Effect of Coscinoderma sp. Extract on Human Colon Cancer Cells vol.31, pp.4, 2016, https://doi.org/10.13103/JFHS.2016.31.4.294