• Title/Summary/Keyword: metabolic energy

Search Result 690, Processing Time 0.027 seconds

Different Sources and Levels of Copper Supplementation on Performance and Nutrient Utilization of Castrated Black Bengal (Capra hircus) Kids Diet

  • Mondal, M.K.;Biswas, P.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.7
    • /
    • pp.1067-1075
    • /
    • 2007
  • Twenty eight 3-4 month old castrated Black Bengal kids (Capra hircus) were used to determine the effects of source and level of dietary copper (Cu) concentration on their performance and nutrient utilization. Cu was supplemented (0, 10, 20 and 30 mg/kg diet DM) as copper sulfate ($CuSO_4$, $5H_2O$) or copper proteinate (Cu-P). Kids were fed a basal diet containing maize (19.5%), soybean (17.0%), deoiled rice bran (56.5%), molasses (4.0%), di-calcium phosphate and salt (1.0% each) and mineral and vitamin mixture (0.5% each) supplements at 3.5% of body weight to meet NRC (1981) requirements for protein, energy, macro minerals and micro minerals, excluding Cu. The basal diet contained 5.7 mg Cu/kg, 122.5 mg Fe/kg, 110 mg Zn/kg, 0.26 mg Mo/kg and 0.32% S. $CuSO_4$ or Cu-P was added to the basal diet at the rate of 10, 20 and 30 mg/kg. Kids were housed in a well ventilated shed with facilities for individual feeding in aluminum plated metabolic cages. Blood samples were collected from the jugular vein on d 0, 30, 60 and 90 to determine hemoglobin (Hb), packed cell volume (PCV), total erythrocyte count (TEC), total leukocyte count (TLC) and serum enzymes (alkaline phosphatase, alanine transferase and aspertate transferase). A metabolism trial of 6 days duration was conducted after 90 days of experimental feeding. Statistical analysis revealed that source and level of Cu supplementation improved live weight gain (p<0.04) and average daily gain (p<0.01). No significant contribution of source and level of Cu to alter serum serum enzymes was evident. Goats fed Cu-P tended to have higher Hb, PCV and TEC than with $CuSO_4$ supplementation. Cu-P increased digestibility of ether extract (EE, p<0.02) and crude fiber (p<0.05) and showed an increasing trend (p<0.09) for digested crude protein (CP) and crude fiber (CF). Supplemental dose of Cu linearly improved (p<0.02) digestibilities of dry matter (DM), organic matter (OM), EE and nitrogen free extract (NFE). Though the absorption of nitrogen (N) was not affected (p>0.10) by both source and dose of Cu, N retention was affected (p<0.04) and there was a significant $Source{\times}Dose$ interaction (p<0.05). Final body weight (BW) was not influenced (p>0.10) by the source of Cu but increasing dose of Cu increased (p<0.04) the BW of kids. TDN intake (g/kg $W^{0.75}$) was higher (p<0.05) with the increased dose of Cu and there was a significant $Source{\times}Dose$ interaction. It was concluded that supplementation of Cu from different sources and varying dose level in a concentrate based diet may improve performance, nutrient utilization and plane of nutrition in castrated Black Bengal kids. The effects on performance and nutrient utilization are more pronounced with Cu-P than $CuSO_4$ supplementation. Higher dose of Cu showed better result than lower dose.

Effects of Aerobic Exercise on Serum Blood Lipids, Leptin, Ghrelin, and HOMA-IR Factors in Postmenopausal Obese Women (유산소 운동이 폐경 후 비만여성의 혈청지질, 렙틴, 그렐린 및 인슐린저항성지수에 미치는 영향)

  • Lee, Jeong-Ah;Kim, Ji-Hyeon;Kim, Jong-Won;Kim, Do-Yoen
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.2
    • /
    • pp.549-558
    • /
    • 2017
  • The aim of this study was to analyze the effects of aerobic exercise on the blood lipids, leptin, ghrelin, and HOMA-IR factors in obese postmenopausal Korean women. Thirty-six healthy postmenopausal women (mean age, $54.47{\pm}2.50$ years) with >32 % body fat were assigned randomly to an aerobic exercise group (n = 18) or to a "no exercise" control group (n = 18). The subjects' body composition, blood lipid, leptin, ghrelin levels, and HOMA-IR were measured before and after a 16-week line-dancing program. The exercise group showed a significant decrease in body weight, percent body fat, body mass index, visceral fat area, leptin, insulin, glucose, HOMA-IR, total cholesterol, triglycerides, apolipoprotein B, low-density lipoprotein cholesterol, and systolic and diastolic blood pressure. In addition, this group exhibited a significant increase in the apolipoprotein A-I, ghrelin, and high-density lipoprotein cholesterol levels. The energy metabolic factors that influenced the visceral fat included ghrelin, leptin, insulin, glucose, and HOMA-IR. The t-value, which determined the statistical significance of the independent variables, was significant for ghrelin, glucose, insulin, and HOMA-IR (p < 0.05). Regular and continuous aerobic exercise (e.g., line dancing) effectively improved the body composition, visceral fat, serum blood lipids, leptin, ghrelin, and HOMA-IR factors in obese postmenopausal Korean women.

Bovine Growth Hormone and Milk Fat Synthesis: from the Body to the Molecule - Review -

  • Kim, W.Y.;Ha, J.K.;Han, In K.;Baldwin, R.L.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.10 no.4
    • /
    • pp.335-356
    • /
    • 1997
  • Injection of bovine growth hormone (bGH) to lactating dairy cows increases milk yield and yields of milk components including fat. It is generally believed that most of the anabolic effects derived from bGH in animal tissues are primarily mediated by IGF-1. IGF-1 is a strong anabolic peptide in the plasma of animals and exerts mitogenic and metabolic effects on target cells. Contrary to most protein hormones, the majority of IGF-1 in circulation is bound to the binding proteins (IGFBPs) which are known to be responsible for modifying the biological actions of IGF-1, thus making determinations of IGF-1 actions more difficult. On the other hand, fat is a major milk component and the greatest energy source in milk. Currently, the fat content of milk is one of the major criteria used in determining milk prices. It has been known that flavor and texture of dairy products are mainly affected by milk fat and its composition. Acetyl-CoA carboxylase (ACC) is the rate limiting enzyme which catalyzes the conversion of acetyl-CoA to malonyl-CoA for fatty acid synthesis in 1ipogenic tissues of animals including bovine lactating mammary glands. In addition to the short-tenn hormonal regulation of ACC by changes in the catalytic efficiency per enzyme molecule brought about by phosphorylation and dephosphorylation of the enzyme, the long-term hormonal regulation of ACC by changes in the number of enzyme molecules plays an essential role in control of ACC and lipogenesis. Insulin, at supraphysiological concentrations, binds to IGF-1 receptors, thereby mimicking the biological effects of IGF-1. The receptors for insulin and IGF-1 share structural and functional homology. Furthermore, epidermal growth factor increased ACC activity in rat hepatocytes and adipocytes. Therefore, it can be assumed that IGF-1 mediating bGH action may increase milk fat production by stimulation ACC with phosphorylation (short term) and/or increasing amounts of the enzyme proteins (long term). Consequently, the main purpose of this paper is to give the readers not only the galactopoietic effects of bGH, but also the insight of bGH action with regard to stimulating milk fat synthesis from the whole body to the molecular levels.

Beneficial effect of fish oil on bone mineral density and biomarkers of bone metabolism in rats (어유의 n-3 지방산이 흰쥐의 골밀도와 골격대사지표에 미치는 영향)

  • Yoon, Gun-Ae
    • Journal of Nutrition and Health
    • /
    • v.45 no.2
    • /
    • pp.121-126
    • /
    • 2012
  • This study evaluated the effect of fish oil rich in n-3 fatty acids on bone characteristics in Sprague-Dawley rats. Weanling male rats were randomized to receive either a diet containing high fish oil (FO), fish oil blended with corn oil (FICO), or soy oil rich in n-6 fatty acids (SO) for 4 weeks. All diets provided 70 g/kg fat based on the AIN-93G diet. Growth and biomarkers of bone metabolism were analyzed, and femur bone characteristics were measured by dual-energy X-ray absorptiometry. After the dietary treatment, no significant differences among the diet groups were observed for serum concentrations of Ca, parathyroid hormone, calcitonin, or osteocalcin. Alkaline phosphatase activity was significantly greater in FO-fed rats compared to that in the FICO and SO groups, whereas no difference in deoxypyridinoline values was observed, supporting the positive effect of a FO diet on bone formation. These results were accompanied by a significant increase in femur bone mineral density (BMD) in FO-fed rats. These findings suggest that providing fish oil rich in n-3 fatty acids correlates with higher alkaline phosphatase activity and BMD values, favoring bone formation in growing rats.

Anaerobic Bacterial Degradation for the Effective Utilization of Biomass

  • Ohmiya, Kunio;Sakka, Kazuo;Kimura, Tetsuya
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.6
    • /
    • pp.482-493
    • /
    • 2005
  • Biomass is originally photosynthesized from inorgainic compounds such as $CO_2$, minerals, water and solar energy. Recent studies have shown that anaerobic bacteria have the ability to convert recalcitrant biomass such as cellullosic or chitinoic materials to useful compounds. The biomass containing agricultural waste, unutilized wood and other garbage is expected to utilize as feed, food and fuel by microbial degradation and other metabolic functions. In this study we isolated several anaerobic, cellulolytic and chitinolytic bacteria from rumen fluid, compost and soil to study their related enzymes and genes. The anaerobic and cellulolytic bacteria, Clostridium thermocellum, Clostridium stercorarium, and Clostridium josui, were isolated from compost and the chitinolytic Clostridium paraputrificum from beach soil and Ruminococcus albus was isolated from cow rumen. After isolation, novel cellulase and xylanase genes from these anaerobes were cloned and expressed in Escherichia coli. The properties of the cloned enzymes showed that some of them were the components of the enzyme (cellulase) complex, i.e., cellulosome, which is known to form complexes by binding cohesin domains on the cellulase integrating protein (Cip: or core protein) and dockerin domains on the enzymes. Several dockerin and cohesin polypeptides were independently produced by E. coli and their binding properties were specified with BIAcore by measuring surface plasmon resonance. Three pairs of cohesin-dockerin with differing binding specificities were selected. Two of their genes encoding their respective cohesin polypeptides were combined to one gene and expressed in E. coli as a chimeric core protein, on which two dockerin-dehydrogenase chimeras, the dockerin-formaldehyde dehydrogenase and the dockerin-NADH dehydrogenase are planning to bind for catalyzing $CO_2$ reduction to formic acid by feeding NADH. This reaction may represent a novel strategy for the reduction of the green house gases. Enzymes from the anaerobes were also expressed in tobacco and rice plants. The activity of a xylanase from C. stercorarium was detected in leaves, stems, and rice grain under the control of CaMV35S promoter. The digestibility of transgenic rice leaves in goat rumen was slightly accelerated. C. paraputrificum was found to solubilize shrimp shells and chitin to generate hydrogen gas. Hydrogen productivity (1.7 mol $H_2/mol$ glucos) of the organism was improved up to 1.8 times by additional expression of the own hydrogenase gene in C. paraputrficum using a modified vector of Clostridiu, perfringens. The hydrygen producing microflora from soil, garbage and dried pelletted garbage, known as refuse derived fuel(RDF), were also found to be effective in converting biomass waste to hydrogen gas.

Human-Powered Generator designed for Sustainable Driving (고출력 지속이 가능한 인체 구동 방식의 자가 발전기 개발)

  • Lim, Yoon-Ho;Yang, Yoonseok
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.7
    • /
    • pp.135-142
    • /
    • 2015
  • Human-powered self-generating devices have been attractive with its operation characteristic independent from outer environment such as weather condition and wind speed. However, conventional self-generators have low electric power output due to their weakly-coupled electromagnetic structure. More importantly, rotary crank motion which is usually adopted by conventional self-generator to generate electricity requires specific skeletal muscles to maintain large torque circular motion and consequently, causes fatigue on those muscles before it can generate enough amount of electricity for any practical application. Without improvement in electric power output and usability, the human-powered self-generator could not be used in everyday life. This study aims to develop a human-powered self-generator which realized a strong electromagnetic coupling in a closed-loop tubular structure (hula-hoop shape) for easy and steady long-term driving as well as larger electric output. The performance and usability of the developed human-powered generator is verified through experimental comparison with a commercial one. Additionally, human workload which is a key element of a human-powered generator but not often considered elsewhere, is estimated based on metabolic energy expenditure measured respiratory gas analyzer. Further study will focus on output and portability enhancement, which can contribute to the continuous power supply of mobile equipments.

Genotoxicological Safety Evaluation of X-ray Irradiated Four Foods (X-선 조사식품 4종의 유전독성학적 안전성 평가)

  • Jung, Da-Woon;Huang, Yu-Hua;Song, Beom-Seok;Byun, Myung-Woo;Kang, Il-Jun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.10
    • /
    • pp.1588-1593
    • /
    • 2014
  • This study evaluated the genotoxic effects of 30 kGy of X-ray irradiation to four foods (chicken, egg powder, dried green onion, and black pepper). In bacterial reversion assay with Salmonella Typhimurium TA98, TA100, TA1535, and TA1537, the X-ray irradiated foods did not show a significantly increased number of revertant colonies in the presence or absence of the S9 metabolic activation system. In chromosomal aberration tests with Chinese hamster ovary (CHO) cells, the X-ray irradiated foods showed no increase in the frequency of chromosomal aberrations. In in vivo mouse micronucleus assay, the X-ray irradiated foods did not show any increase in the frequency of polychromatic erythrocytes with micronuclei. These results indicate that 30 kGy of X-ray irradiation to four foods (chicken, egg powder, dried green onion, and black pepper) showed no genotoxic effects under these experimental conditions.

Pharmacokinetic and Pharmacodynamic Interaction between Metformin and (-)-Epigallocatechin-3-gallate

  • Ko, Jeong-Hyeon;Jang, Eun-Hee;Park, Chang-Shin;Kim, Hyoung-Kwang;Cho, Soon-Gu;Shin, Dong-Wun;Yi, Hyeon-Gyu;Kang, Ju-Hee
    • Molecular & Cellular Toxicology
    • /
    • v.5 no.4
    • /
    • pp.298-303
    • /
    • 2009
  • (-)-Epigallocatechin-3-gallate (EGCG), a major flavonoid in green tea has multiple health benefits including chemoprevention, anti-inflammatory, anti-diabetic, and anti-obesity effects. In connection with these effects, EGCG can be a candidate to help the treatment of metabolic diseases. Metformin is a widely used anti-diabetic drug regulating cellular energy homeostasis via AMP-activated protein kinase (AMPK) activation. Therefore, the combination of metformin with EGCG may have additive or synergistic effects on treatment of type 2 diabetes. Nevertheless, there is no report for the pharmacokinetic and/or pharmacodynamic interaction of EGCG with metformin. Here, we evaluated the pharmacokinetic and pharmacodynamic interaction between metformin and EGCG in rats. Pharmacokinetics parameters of metformin were measured after oral administration of metformin in rats pre-treated with EGCG (10 mg/kg) or saline for 7 days. The results showed that there is no significant difference in pharmacokinetic parameters between saline control and EGCG-treated group. In addition, the hepatic AMPK activation by metformin in EGCG-treated rats was also similar to the control. The lack of additive effects of EGCG on AMPK activation or intracellular uptake of metformin was also evaluated in cells in the presence or absence of EGCG. Treatment of HepG2 cells with EGCG inhibited the metformin-induced AMPK activation. Combined results suggested that EGCG has no effect on the pharmacokinetics of metformin but may contribute to metformin action.

PROTEIN SPARING EFFECT AND AMINO ACID DIGESTIBILITIES OF SUPPLEMENTAL LYSINE AND METHIONINE IN WEANLING PIGS

  • Han, I.K.;Heo, K.N.;Shin, I.S.;Lee, H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.8 no.4
    • /
    • pp.393-402
    • /
    • 1995
  • Experiments were conducted to evaluate the nutritive values of supplemental L-lysine, liquid and powder type, and DL-methionine in weanling pigs. For feeding trial, 165 weanling pigs were treated in 2 controls; 18 and 16% CP, 6 supplementations of lysine alone to 16% CP diets; 0.1, 0.2 and 0.4% of liquid and powder type each, and 3 supplementations of lysine + methionine to 15% CP diets; 0.05 + 0.025, 0.1 + 0.05 and 0.2 + 0.1%. Pigs were fed for 5 week to investigate the protein sparing effect of supplemental amino acid, and the optimal supplemental level. A metabolic trial included the measurements of digestibilities of dry matter, crude protein, crude fat, crude fiber, energy, phosphorus and amino acids. The liver acinar cell culture was conducted for the protein synthesis activity of the pigs fed each experimental diet. Supplementation of both type of L-lysine in 16% CP diet showed improved daily weight gain and feed efficiency which were compatible with those of pigs fed 18% CP diet. Groups fed liquid lysine did not differ from those fed powder type in growth performance. Supplementation of lysine and methionine to 15% CP diet did not improve growth performance of pigs to the extent that 18% CP diet was fed. In nutrient digestibility, 16% CP control diet showed significantly (p < 0.05) lower crude protein digestibility than any other treatments. Digestibilities of 16% CP diets with lysine supplementation were equal to that of 18% CP control, while digestibilities of 15% CP diets with the supplementation of lysine + methionine was inferior to that of 18% CP control. Supplementation of lysine alone reduced the nitrogen excretion compared to the none supplemented control groups. However, addition of lysine + methionine excreted more nitrogen than controls. Pigs fed diet supplemented with lysine alone, or lysine + methionine excreted less fecal phosphorus than those fed none supplemetation. Retained protein from liver tissue of pigs fed 18% diet was significantly (p < 0.05) greater than those fed 16% CP diet. A significant difference (p < 0.05) was observed in physical type of lysine. Feeding of powder type showed less secreted protein and greater retained protein in the culture of liver acinar cell. It is concluded that supplementation of lysine at the level of 0.1 to 0.2% can spare 2% of dietary protein and reduce nitrogen excretion by 19.3%. Also, no difference in nutritional values was observed between liquid and powder lysine in weanling pigs.

Effects of Water Temperature and Feeding Rate on Growth and Body Composition of Grower Olive Flounder Paralichthys olivaceus (사육 수온 및 사료 공급율이 넙치의 성장 및 체조성에 미치는 영향)

  • KIM, Kyoung-Duck;KIM, Kang-Woong;LEE, Bong-Joo;HAN, Hyon-Sob
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.28 no.3
    • /
    • pp.611-618
    • /
    • 2016
  • A $3{\times}2$ factorial experiment was conducted to investigate effects of water temperature and feeding rate on growth and body composition of olive flounder. Triplicate groups of fish (initial body weight of 118 g) fed a extruded pellet (55% protein and 4708 cal/g) to satiation and at restricted feeding rates of 0.25 and 0.4% body weight per day (BW/d) at the different water temperatures (13 and $18^{\circ}C$) for 9 weeks. Weight gain increased significantly with increase in feeding rates at each temperature. Weight gain of fish fed to satiation was significantly higher at 18 than $13^{\circ}C$, whereas, that of fish fed at 0.25 and 0.4% BW/d were significantly or slightly lower at 18 than $13^{\circ}C$. Feed efficiency and protein efficiency ratio of fish fed to satiation were not significantly different between 13 and $18^{\circ}C$, but those of fish fed at 0.25 and 0.4% BW/d were significantly higher at 13 than $18^{\circ}C$. The major finding of this study is that satiation feeding is efficient for optimal growth and feed efficiency of grower oliver flounder (116-164 g) in suboptimal water temperatures. The maintenance feeding ration which is zero growth performance, were 0.30 and 0.41% BW/day at 13 and $18^{\circ}C$, respectively. In the restricted feeding regime, compromised growth of fish were worsen in higher water temperature ($18^{\circ}C$ vs. $13^{\circ}C$). It might be related to high metabolic rate of fish that spend more energy for maintenance metabolism. Based on these results, we suggest that a satiation feeding regime is recommended for a productive growth of grower olive flounder in the suboptimal temperature.