References
- Wang, D. S. et al. Involvement of organic cation transporter 1 in hepatic and intestinal distribution of metformin. J Pharmacol Exp Ther 302:510-515 (2002) https://doi.org/10.1124/jpet.102.034140
- Shu, Y. et al. Effect of genetic variation in the organic cation transporter 1 (OCT1) on metformin action. J Clin Invest 117:1422-1431 (2007) https://doi.org/10.1172/JCI30558
- Graham, H. N. Green tea composition, consumption, and polyphenol chemistry. Prev Med 21:334-350 (1992) https://doi.org/10.1016/0091-7435(92)90041-F
- Raederstorff, D. G., Schlachter, M. F., Elste, V. & Weber, P. Effect of EGCG on lipid absorption and plasma lipid levels in rats. J Nutr Biochem 14:326-332 (2003) https://doi.org/10.1016/S0955-2863(03)00054-8
- Choi, Y. B., Kim, Y. I., Lee, K. S., Kim, B. S. & Kim, D. J. Protective effect of epigallocatechin gallate on brain damage after transient middle cerebral artery occlusion in rats. Brain Res 1019:47-54 (2004) https://doi.org/10.1016/j.brainres.2004.05.079
- Qanungo, S., Das, M., Haldar, S. & Basu, A. Epigallocatechin-3-gallate induces mitochondrial membrane depolarization and caspase-dependent apoptosis in pancreatic cancer cells. Carcinogenesis 26:958-967 (2005) https://doi.org/10.1093/carcin/bgi040
- Kao, Y. H., Hiipakka, R. A. & Liao, S. Modulation of endocrine systems and food intake by green tea epigallocatechin gallate. Endocrinology 141:980-987 (2000) https://doi.org/10.1210/en.141.3.980
- Kao, Y. H., Hiipakka, R. A. & Liao, S. Modulation of obesity by a green tea catechin. Am J Clin Nutr 72:1232-1234 (2000) https://doi.org/10.1093/ajcn/72.5.1232
- Dulloo, A. G. et al. Efficacy of a green tea extract rich in catechin polyphenols and caffeine in increasing 24-h energy expenditure and fat oxidation in humans. Am J Clin Nutr 70:1040-1045 (1999) https://doi.org/10.1093/ajcn/70.6.1040
- Liao, S., Kao, Y. H. & Hiipakka, R. A. Green tea: biochemical and biological basis for health benefits. Vitam Horm 62:1-94 (2001) https://doi.org/10.1016/S0083-6729(01)62001-6
- Song, E. K., Hur, H. & Han, M. K. Epigallocatechin gallate prevents autoimmune diabetes induced by multiple low doses of streptozotocin in mice. Arch Pharm Res 26:559-563 (2003) https://doi.org/10.1007/BF02976881
- Anderson, R. A. & Polansky, M. M. Tea enhances insulin activity. J Agric Food Chem 50:7182-7186 (2002) https://doi.org/10.1021/jf020514c
- Waltner-Law, M. E. et al. Epigallocatechin gallate, a constituent of green tea, represses hepatic glucose production. J Biol Chem 277:34933-34940 (2002) https://doi.org/10.1074/jbc.M204672200
- Iso, H. et al. The relationship between green tea and total caffeine intake and risk for self-reported type 2 diabetes among Japanese adults. Ann Intern Med 144: 554-562 (2006) https://doi.org/10.7326/0003-4819-144-8-200604180-00005
- Collins, Q. F. et al. Epigallocatechin-3-gallate (EGCG), a green tea polyphenol, suppresses hepatic gluconeogenesis through 5′-AMP-activated protein kinase. J Biol Chem 282:30143-30149 (2007) https://doi.org/10.1074/jbc.M702390200
- Lambert, J. D. & Yang, C. S. Mechanisms of cancer prevention by tea constituents. J Nutr 133:3262S- 3267S (2003) https://doi.org/10.1093/jn/133.10.3262S
- Hwang, J. T. et al. Genistein, EGCG, and capsaicin inhibit adipocyte differentiation process via activating AMP-activated protein kinase. Biochem Biophys Res Commun 338:694-699 (2005) https://doi.org/10.1016/j.bbrc.2005.09.195
- Hwang, J. T. et al. Apoptotic effect of EGCG in HT- 29 colon cancer cells via AMPK signal pathway. Cancer Lett 247:115-121 (2007) https://doi.org/10.1016/j.canlet.2006.03.030
- Lin, C. L. & Lin, J. K. Epigallocatechin gallate (EGCG) attenuates high glucose-induced insulin signaling blockade in human hepG2 hepatoma cells. Mol Nutr Food Res 52:930-939 (2008) https://doi.org/10.1002/mnfr.200700437
- Lin, C. L., Huang, H. C. & Lin, J. K. Theaflavins attenuate hepatic lipid accumulation through activating AMPK in human HepG2 cells. J Lipid Res 48:2334-2343 (2007) https://doi.org/10.1194/jlr.M700128-JLR200
- Monteiro, R. et al. Modulation of MPP+ uptake by tea and some of its components in Caco-2 cells. Naunyn Schmiedebergs Arch Pharmacol 372:147-152 (2005) https://doi.org/10.1007/s00210-005-0012-7
- Lee, Y. J. et al. Analysis of bioequivalence study using log-transformed model. Yakhakhoeji 44:308-314 (2000)