• Title/Summary/Keyword: meta-heuristic optimization

Search Result 145, Processing Time 0.02 seconds

An optimal feature selection algorithm for the network intrusion detection system (네트워크 침입 탐지를 위한 최적 특징 선택 알고리즘)

  • Jung, Seung-Hyun;Moon, Jun-Geol;Kang, Seung-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.342-345
    • /
    • 2014
  • Network intrusion detection system based on machine learning methods is quite dependent on the selected features in terms of accuracy and efficiency. Nevertheless, choosing the optimal combination of features from generally used features to detect network intrusion requires extensive computing resources. For instance, the number of possible feature combinations from given n features is $2^n-1$. In this paper, to tackle this problem we propose a optimal feature selection algorithm. Proposed algorithm is based on the local search algorithm, one of representative meta-heuristic algorithm for solving optimization problem. In addition, the accuracy of clusters which obtained using selected feature components and k-means clustering algorithm is adopted to evaluate a feature assembly. In order to estimate the performance of our proposed algorithm, comparing with a method where all features are used on NSL-KDD data set and multi-layer perceptron.

  • PDF

A Genetic Algorithm for Production Scheduling of Biopharmaceutical Contract Manufacturing Products (바이오의약품 위탁생산 일정계획 수립을 위한 유전자 알고리즘)

  • Ji-Hoon Kim;Jeong-Hyun Kim;Jae-Gon Kim
    • The Journal of Bigdata
    • /
    • v.9 no.1
    • /
    • pp.141-152
    • /
    • 2024
  • In the biopharmaceutical contract manufacturing organization (CMO) business, establishing a production schedule that satisfies the due date for various customer orders is crucial for competitiveness. In a CMO process, each order consists of multiple batches that can be allocated to multiple production lines in small batch units for parallel production. This study proposes a meta-heuristic algorithm to establish a scheduling plan that minimizes the total delivery delay of orders in a CMO process with identical parallel machine. Inspired by biological evolution, the proposed algorithm generates random data structures similar to chromosomes to solve specific problems and effectively explores various solutions through operations such as crossover and mutation. Based on real-world data provided by a domestic CMO company, computer experiments were conducted to verify that the proposed algorithm produces superior scheduling plans compared to expert algorithms used by the company and commercial optimization packages, within a reasonable computation time.

Development of the Meta-heuristic Optimization Algorithm: Exponential Bandwidth Harmony Search with Centralized Global Search (새로운 메타 휴리스틱 최적화 알고리즘의 개발: Exponential Bandwidth Harmony Search with Centralized Global Search)

  • Kim, Young Nam;Lee, Eui Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.2
    • /
    • pp.8-18
    • /
    • 2020
  • An Exponential Bandwidth Harmony Search with Centralized Global Search (EBHS-CGS) was developed to enhance the performance of a Harmony Search (HS). EBHS-CGS added two methods to improve the performance of HS. The first method is an improvement of bandwidth (bw) that enhances the local search. This method replaces the existing bw with an exponential bw and reduces the bw value as the iteration proceeds. This form of bw allows for an accurate local search, which enables the algorithm to obtain more accurate values. The second method is to reduce the search range for an efficient global search. This method reduces the search space by considering the best decision variable in Harmony Memory (HM). This process is carried out separately from the global search of the HS by the new parameter, Centralized Global Search Rate (CGSR). The reduced search space enables an effective global search, which improves the performance of the algorithm. The proposed algorithm was applied to a representative optimization problem (math and engineering), and the results of the application were compared with the HS and better Improved Harmony Search (IHS).

A Method to Find Feature Set for Detecting Various Denial Service Attacks in Power Grid (전력망에서의 다양한 서비스 거부 공격 탐지 위한 특징 선택 방법)

  • Lee, DongHwi;Kim, Young-Dae;Park, Woo-Bin;Kim, Joon-Seok;Kang, Seung-Ho
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.2
    • /
    • pp.311-316
    • /
    • 2016
  • Network intrusion detection system based on machine learning method such as artificial neural network is quite dependent on the selected features in terms of accuracy and efficiency. Nevertheless, choosing the optimal combination of features, which guarantees accuracy and efficienty, from generally used many features to detect network intrusion requires extensive computing resources. In this paper, we deal with a optimal feature selection problem to determine 6 denial service attacks and normal usage provided by NSL-KDD data. We propose a optimal feature selection algorithm. Proposed algorithm is based on the multi-start local search algorithm, one of representative meta-heuristic algorithm for solving optimization problem. In order to evaluate the performance of our proposed algorithm, comparison with a case of all 41 features used against NSL-KDD data is conducted. In addtion, comparisons between 3 well-known machine learning methods (multi-layer perceptron., Bayes classifier, and Support vector machine) are performed to find a machine learning method which shows the best performance combined with the proposed feature selection method.

A Effective Ant Colony Algorithm applied to the Graph Coloring Problem (그래프 착색 문제에 적용된 효과적인 Ant Colony Algorithm에 관한 연구)

  • Ahn, Sang-Huck;Lee, Seung-Gwan;Chung, Tae-Choong
    • The KIPS Transactions:PartB
    • /
    • v.11B no.2
    • /
    • pp.221-226
    • /
    • 2004
  • Ant Colony System(ACS) Algorithm is new meta-heuristic for hard combinational optimization problem. It is a population-based approach that uses exploitation of positive feedback as well as greedy search. Recently, various methods and solutions are proposed to solve optimal solution of graph coloring problem that assign to color for adjacency node($v_i, v_j$) that they has not same color. In this paper introducing ANTCOL Algorithm that is method to solve solution by Ant Colony System algorithm that is not method that it is known well as solution of existent graph coloring problem. After introducing ACS algorithm and Assignment Type Problem, show the wav how to apply ACS to solve ATP And compare graph coloring result and execution time when use existent generating functions(ANT_Random, ANT_LF, ANT_SL, ANT_DSATUR, ANT_RLF method) with ANT_XRLF method that use XRLF that apply Randomize to RLF to solve ANTCOL. Also compare graph coloring result and execution time when use method to add re-search to ANT_XRLF(ANT_XRLF_R) with existent generating functions.