DOI QR코드

DOI QR Code

Development of the Meta-heuristic Optimization Algorithm: Exponential Bandwidth Harmony Search with Centralized Global Search

새로운 메타 휴리스틱 최적화 알고리즘의 개발: Exponential Bandwidth Harmony Search with Centralized Global Search

  • Kim, Young Nam (Division of Civil Engineering, Chungbuk National University) ;
  • Lee, Eui Hoon (Division of Civil Engineering, Chungbuk National University)
  • 김영남 (충북대학교 토목공학과) ;
  • 이의훈 (충북대학교 토목공학과)
  • Received : 2019.10.21
  • Accepted : 2020.02.07
  • Published : 2020.02.29

Abstract

An Exponential Bandwidth Harmony Search with Centralized Global Search (EBHS-CGS) was developed to enhance the performance of a Harmony Search (HS). EBHS-CGS added two methods to improve the performance of HS. The first method is an improvement of bandwidth (bw) that enhances the local search. This method replaces the existing bw with an exponential bw and reduces the bw value as the iteration proceeds. This form of bw allows for an accurate local search, which enables the algorithm to obtain more accurate values. The second method is to reduce the search range for an efficient global search. This method reduces the search space by considering the best decision variable in Harmony Memory (HM). This process is carried out separately from the global search of the HS by the new parameter, Centralized Global Search Rate (CGSR). The reduced search space enables an effective global search, which improves the performance of the algorithm. The proposed algorithm was applied to a representative optimization problem (math and engineering), and the results of the application were compared with the HS and better Improved Harmony Search (IHS).

본 연구에서는 기존의 Harmony Search(HS)의 성능을 강화한 Exponential Bandwidth Harmony Search with Centralized Global Search(EBHS-CGS)를 개발하였다. EBHS-CGS는 HS의 성능 강화를 위해 총 두 가지 방법을 추가하였다. 첫 번째 방법은 지역탐색을 강화하기 위한 Bandwidth(bw) 개량방안이다. 이 방법은 기존 bw를 지수형태의 bw로 대체하여 적용함으로써 반복시산이 진행되면서 bw값을 줄인다. 이러한 형태의 bw는 정밀한 지역탐색을 가능하고, 이를 통해 알고리즘은 더욱 정밀한 값을 구할 수 있다. 두 번째 방법은 효과적인 전역탐색을 위한 탐색범위 축소이다. 이 방법은 Harmony Memory(HM) 내에서 가장 좋은 결정변수를 고려하여 탐색범위를 축소한다. 이를 Centralized Global Search(CGS)라 하며, 이 과정은 새로운 매개변수 Centralized Global Search Rate(CGSR)에 의해 HS의 전역탐색과는 별도로 진행된다. 축소된 탐색범위는 효과적인 전역탐색을 가능하게 하며, 이를 통해 알고리즘의 성능이 향상된다. EBHS-CGS를 대표적인 최적화 문제(수학 및 공학 분야)에 적용하고, 그 결과를 HS와 Improved Harmony Search(IHS)와 비교하여 제시하였다.

Keywords

References

  1. GOLDBERG, David E.; HOLLAND, John H. Genetic algorithms and machine learning, Machine learning, 1988, 3.2: pp.95-99. DOI: http://dx.doi.org/10.1023/A:1022602019183
  2. DORIGO, Marco; DI CARO, Gianni. Ant colony optimization: a new meta-heuristic, In: Proceedings of the 1999 congress on evolutionary computation-CEC99 (Cat. No. 99TH8406). IEEE, 1999. pp.1470-1477. DOI: http://dx.doi.org/10.1109/CEC.1999.782657
  3. EBERHART, Russell; KENNEDY, James. Particle swarm optimization. In: Proceedings of the IEEE international conference on neural networks. 1995. pp.1942-1948. DOI: http://dx.doi.org/10.1109/icnn.1995.488968
  4. GEEM, Zong Woo; KIM, Joong Hoon; LOGANATHAN, Gobichettipalayam Vasudevan, A new heuristic optimization algorithm: harmony search. simulation, Vol.76, No.2, pp.60-68, 2001. DOI: http://dx.doi.org/10.1177/00375497010760020
  5. MAHDAVI, Mehrdad; FESANGHARY, Mohammad; DAMANGIR, E. An improved harmony search algorithm for solving optimization problems, Applied mathematics and computation, Vol.188, No.2: pp.1567-1579, 2007. DOI: https://doi.org/10.1016/j.amc.2006.11.033
  6. OMRAN, Mahamed GH; MAHDAVI, Mehrdad. Global-best harmony search, Applied mathematics and computation, Vol.198, No.2: pp.643-656, 2008, DOI: https://doi.org/10.1016/j.amc.2007.09.004
  7. WANG, Chia-Ming; HUANG, Yin-Fu. Self-adaptive harmony search algorithm for optimization, Expert Systems with Applications, Vol.37, No.4, pp.2826-2837, 2010. DOI: https://doi.org/10.1016/j.eswa.2009.09.008
  8. GU, Jiadong; WU, Defeng. A random distribution harmony search algorithm, In: 2018 Tenth International Conference on Advanced Computational Intelligence (ICACI). IEEE, pp.432-437, 2018. DOI: https://doi.org/10.1109/ICACI.2018.8377498
  9. JING, Wang, et al. A dynamical search space harmony search for unconstrained optimization problems, In: 2013 9th Asian Control Conference (ASCC). IEEE, pp.1-6, 2013. DOI: https://doi.org/10.1109/ASCC.2013.6606037