• 제목/요약/키워드: mesoscale mechanics

검색결과 22건 처리시간 0.019초

A damage mechanics based random-aggregate mesoscale model for concrete fracture and size effect analysis

  • Ni Zhen;Xudong Qian
    • Computers and Concrete
    • /
    • 제33권2호
    • /
    • pp.147-162
    • /
    • 2024
  • This study presents a random-aggregate mesoscale model integrating the random distribution of the coarse aggerates and the damage mechanics of the mortar and interfacial transition zone (ITZ). This mesoscale model can generate the random distribution of the coarse aggregates according to the prescribed particle size distribution which enables the automation of the current methodology with different coarse aggregates' distribution. The main innovation of this work is to propose the "correction factor" to eliminate the dimensionally dependent mesh sensitivity of the concrete damaged plasticity (CDP) model. After implementing the correction factor through the user-defined subroutine in the randomly meshed mesoscale model, the predicted fracture resistance is in good agreement with the average experimental results of a series of geometrically similar single-edge-notched beams (SENB) concrete specimens. The simulated cracking pattern is also more realistic than the conventional concrete material models. The proposed random-aggregate mesoscale model hence demonstrates its validity in the application of concrete fracture failure and statistical size effect analysis.

Effect of structural voids on mesoscale mechanics of epoxy-based materials

  • Tam, Lik-ho;Lau, Denvid
    • Coupled systems mechanics
    • /
    • 제5권4호
    • /
    • pp.355-369
    • /
    • 2016
  • Changes in chemical structure have profound effects on the physical properties of epoxy-based materials, and eventually affect the durability of the entire system. Microscopic structural voids generally existing in the epoxy cross-linked networks have a detrimental influence on the epoxy mechanical properties, but the relation remains elusive, which is hindered by the complex structure of epoxy-based materials. In this paper, we investigate the effect of structural voids on the epoxy-based materials by using our developed mesoscale model equipped with the concept of multiscale modeling, and SU-8 photoresist is used as a representative of epoxy-based materials. Developed from the results of full atomistic simulations, the mesoscopic model is validated against experimental measurements, which is suitable to describe the elastic deformation of epoxy-based materials over several orders of magnitude in time- and length scales. After that, a certain quantity of the structure voids is incorporated in the mesoscale model. It is found that the existence of structural voids reduces the tensile stiffness of the mesoscale epoxy network, when compared with the case without any voids in the model. In addition, it is noticed that a certain number of the structural voids have an insignificant effect on the epoxy elastic properties, and the mesoscale model containing structural voids is close to those found in real systems.

A mesoscale model for concrete to simulate mechanical failure

  • Unger, Jorg F.;Eckardt, Stefan;Konke, Carsten
    • Computers and Concrete
    • /
    • 제8권4호
    • /
    • pp.401-423
    • /
    • 2011
  • In this paper, a mesoscale model of concrete is presented, which considers particles, matrix material and the interfacial transition zone (ITZ) as separate constituents. Particles are represented as ellipsoides, generated according to a prescribed grading curve and placed randomly into the specimen. In this context, an efficient separation procedure is used. The nonlinear behavior is simulated with a cohesive interface model for the ITZ and a combined damage/plasticity model for the matrix material. The mesoscale model is used to simulate a compression and a tensile test. Furthermore, the influence of the particle distribution on the loaddisplacement curve is investigated.

A mesoscale stress model for irradiated U-10Mo monolithic fuels based on evolution of volume fraction/radius/internal pressure of bubbles

  • Jian, Xiaobin;Kong, Xiangzhe;Ding, Shurong
    • Nuclear Engineering and Technology
    • /
    • 제51권6호
    • /
    • pp.1575-1588
    • /
    • 2019
  • Fracture near the U-10Mo/cladding material interface impacts fuel service life. In this work, a mesoscale stress model is developed with the fuel foil considered as a porous medium having gas bubbles and bearing bubble pressure and surface tension. The models for the evolution of bubble volume fraction, size and internal pressure are also obtained. For a U-10Mo/Al monolithic fuel plate under location-dependent irradiation, the finite element simulation of the thermo-mechanical coupling behavior is implemented to obtain the bubble distribution and evolution behavior together with their effects on the mesoscale stresses. The numerical simulation results indicate that higher macroscale tensile stresses appear close to the locations with the maximum increments of fuel foil thickness, which is intensively related to irradiation creep deformations. The maximum mesoscale tensile stress is more than 2 times of the macroscale one on the irradiation time of 98 days, which results from the contributions of considerable volume fraction and internal pressure of bubbles. This study lays a foundation for the fracture mechanism analysis and development of a fracture criterion for U-10Mo monolithic fuels.

Mesoscale modelling of concrete for static and dynamic response analysis -Part 1: model development and implementation

  • Tu, Zhenguo;Lu, Yong
    • Structural Engineering and Mechanics
    • /
    • 제37권2호
    • /
    • pp.197-213
    • /
    • 2011
  • Concrete is a heterogeneous material exhibiting quasi-brittle behaviour. While homogenization of concrete is commonly accepted in general engineering applications, a detailed description of the material heterogeneity using a mesoscale model becomes desirable and even necessary for problems where drastic spatial and time variation of the stress and strain is involved, for example in the analysis of local damages under impact, shock or blast load. A mesoscale model can also assist in an investigation into the underlying mechanisms affecting the bulk material behaviour under various stress conditions. Extending from existing mesoscale model studies, where use is often made of specialized codes with limited capability in the material description and numerical solutions, this paper presents a mesoscale computational model developed under a general-purpose finite element environment. The aim is to facilitate the utilization of sophisticated material descriptions (e.g., pressure and rate dependency) and advanced numerical solvers to suit a broad range of applications, including high impulsive dynamic analysis. The whole procedure encompasses a module for the generation of concrete mesoscale structure; a process for the generation of the FE mesh, considering two alternative schemes for the interface transition zone (ITZ); and the nonlinear analysis of the mesoscale FE model with an explicit time integration approach. The development of the model and various associated computational considerations are discussed in this paper (Part 1). Further numerical studies using the mesoscale model for both quasi-static and dynamic loadings will be presented in the companion paper (Part 2).

Reconstruction of internal structures and numerical simulation for concrete composites at mesoscale

  • Du, Chengbin;Jiang, Shouyan;Qin, Wu;Xu, Hairong;Lei, Dong
    • Computers and Concrete
    • /
    • 제10권2호
    • /
    • pp.135-147
    • /
    • 2012
  • At mesoscale, concrete is considered as a three-phase composite material consisting of the aggregate particles, the cement matrix and the interfacial transition zone (ITZ). The reconstruction of the internal structures for concrete composites requires the identification of the boundary of the aggregate particles and the cement matrix using digital imaging technology followed by post-processing through MATLAB. A parameter study covers the subsection transformation, median filter, and open and close operation of the digital image sample to obtain the optimal parameter for performing the image processing technology. The subsection transformation is performed using a grey histogram of the digital image samples with a threshold value of [120, 210] followed by median filtering with a $16{\times}16$ square module based on the dimensions of the aggregate particles and their internal impurity. We then select a "disk" tectonic structure with a specific radius, which performs open and close operations on the images. The edges of the aggregate particles (similar to the original digital images) are obtained using the canny edge detection method. The finite element model at mesoscale can be established using the proposed image processing technology. The location of the crack determined through the numerical method is identical to the experimental result, and the load-displacement curve determined through the numerical method is in close agreement with the experimental results. Comparisons of the numerical and experimental results show that the proposed image processing technology is highly effective in reconstructing the internal structures of concrete composites.

INTERACTIONS WITH EDDIES IN THE UPSTREAM OF THE KUROSHIO AS SEEN BY THE HF RADAR AND ALTIMETRY DATA

  • Ichikawa, Kaoru;Tokeshi, Ryoko
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2006년도 Proceedings of ISRS 2006 PORSEC Volume II
    • /
    • pp.969-972
    • /
    • 2006
  • The long-range High-Frequency (HF) ocean radar system has observed surface velocity field in the upstream of the Kuroshio north of Ishigaki Island and east of Taiwan since 2001. Applying a new method to extract geostrophic velocity component from the HF surface velocity data with the aid of satellite-born wind data, time series of daily surface geostrophic velocity field has been determined. Despite limited width of the study area of the HF radar, analysis of the sea surface height anomaly determined from the satellite altimetry data in a wider area can provide estimated dates of arrival of mesoscale eddies in the study area of the HF radar. Variations of the Kuroshio position and strength are studied in detail for these cases of interaction with mesoscale eddy, although number of occurrence of direct interaction with the Kuroshio in the study area is not statistically enough. For example, when an anticyclonic eddy approaches to the Kuroshio, the Kuroshio axis is found tend to move northward, keeping away from the approaching eddy from the east.

  • PDF

Thermal creep effects of aluminum alloy cladding on the irradiation-induced mechanical behavior in U-10Mo/Al monolithic fuel plates

  • Jian, Xiaobin;Ding, Shurong
    • Nuclear Engineering and Technology
    • /
    • 제52권4호
    • /
    • pp.802-810
    • /
    • 2020
  • Three-dimensional finite element simulations are implemented for the in-pile thermo-mechanical behavior in U-Mo/Al monolithic fuel plates with different thermal creep rates of cladding involved. The numerical results indicate that the thickness increment of fuel foil rises with the thermal creep coefficient of cladding. The maximum Mises stress of cladding is reduced by ~85% from 344 MPa on the 98.0th day when the creep coefficient of cladding increases from 0.01 to 10.0, due to its equivalent thermal creep strain enlarged by 3.5 times. When the thermal creep coefficient of Aluminum cladding increases from 0 to 1.0, the maximum mesoscale stress of fuel foil varies slightly. At the same time, the peak mesoscale normal stress of fuel foil can reach 51 MPa on the 98.0th day for the thermal creep coefficient of 10, which increases by 60.3% of that with the thermal creep un-occurred in the cladding. The maximum through-thickness creep strain components of fuel foil differ slightly for different thermal creep coefficients of cladding. The dangerous region of fuel foil becomes much closer to the heavily irradiated side when the creep coefficient of cladding becomes 10.0. The creep performance of Aluminum cladding should be optimized for the integrity of monolithic fuel plates.

Variability of Mesoscale Eddies in the Pacific Ocean Simulated by an Eddy Resolving OGCM of $1/12^{\circ}$

  • Yim B.Y.;Noh Y.;You S.H.;Yoon J.H.;Qiu B.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2006년도 PARALLEL CFD 2006
    • /
    • pp.133-136
    • /
    • 2006
  • The mesoscale eddy field in the North Pacific Ocean, simulated by a high resolution eddy-resolving OGCM ($1/12^{\circ}C$ horizontal resolution), was analyzed, and compared with satellite altimetry data of TOPEX/Poseidon. High levels of eddy kinetic energy (EKE) appear near the Kurosho, North Equatorial Current (NEC), and Subtropical Countercurrent (STCC) in the western part of the subropical gyre. In particlure, it was found that the EKE level of the STCC has a well-defined annual cycle, but no distinct annual cycle of the EKE exists in any other zonal current of the North Pacific Ocean.

  • PDF

고분자 분리막 연구를 위한 전산모사 도구 소개 (Review on the Computer Simulation Tools for Polymeric Membrane Researches)

  • 최찬희;박치훈
    • 멤브레인
    • /
    • 제30권4호
    • /
    • pp.242-251
    • /
    • 2020
  • 고분자 소재 및 이를 이용하여 제조된 분리막에 주로 활용되는 전산모사 도구들은 모사대상의 크기 및 모사하고자 하는 시간에 따라 여러 가지 분야로 나뉘어진다. 본 총설에 소개되는 전산모사는 그 중에서 전산재료화학에 주로 사용되는 양자역학(quantum mechanics; QM), 분자동역학(molecular dynamics; MD), 메조스케일 전산모사(mesoscale modelling), 이렇게 3가지로 분류된다. 고분자 연구에서 사용되는 전산모사는 각각의 전산모사의 종류마다 연구내용이 달라지는데, 양자역학은 분자, 원자, 전자 등 미시적인 계의 현상을 다루어 작은 크기의 현상을 연구하고, 분자동역학은 원자들 사이의 퍼텐셜 또는 힘이 주어졌을 때 뉴턴의 운동방정식에 따른 원지 및 분자의 움직임을 수치적으로 풀어내고, 메조스케일 모델링은 원자들을 묶어서 그룹형태로 만들어 비드를 형성해 비교적 큰 분자량에서 계산시간을 줄여 거시적으로 판단하는 연구가 된다. 본 총설에서는 고분자 및 고분자 분리막에 주로 활용되는 다양한 전산모사 프로그램을 위에서 분류한 3가지 종류로 나누어 각각의 특징과 사용분야 등을 소개하고자 한다.