• Title/Summary/Keyword: meso-

Search Result 482, Processing Time 0.022 seconds

Tyrosinase Inhibitory Activities of Meso-dihydroguaiaretic Acid from Machilus thunbergii (후박나무에서 분리한 Meso-dihydroguaiaretic acid의 tyrosinase 저해활성)

  • Kwon, Hyun Sook;Lee, Kyung Dong;Kim, Su Cheol;Cho, Soo Jeong
    • Journal of Life Science
    • /
    • v.25 no.11
    • /
    • pp.1298-1303
    • /
    • 2015
  • Machilus thunbergii (Lauraceae) is an evergreen tree cultivated in Korea and Japan. M. thunbergii has long been used as a traditional medicine in Korea, China, and Japan to treat various diseases, including edema, abdominal pain, and abdominal distension. In this study, dried stem bark of M. thunbergii extracted in methanol and extract was partitioned into n-hexane, CHCl3, and BuOH. The CHCl3-soluble extracts chromatographed on silica gel column using a CHCl3/acetone and n-hexane/EtOAc mixture to afford Compound 1 and 2. Two dibenzylbutane lignans, macelignan (1) and meso-dihydroguaiaretic acid (2), were isolated from the CHCl3-soluble extract of M. thunbergii stem bark. The structures of 1 and 2 were determined by 1H- and 13C-NMR spectroscopic data analyses and a comparison with literature data. The tyrosinase inhibitory activity of the isolated compounds was evaluated. Among these compounds, Compound 2 strongly inhibited the monophenolase (IC50=10.2 μM) activity of tyrosinase. A kinetic analysis showed that Compound 2 was a competitive inhibitor. The apparent inhibition constant (Ki) for Compound 2 binding to free enzyme was 4.8 μM. Based on these results, it can be concluded that meso-dihydroguaiaretic acid (2) is a potential candidate for the treatment of melanin biosynthesis-related skin diseases.

Highly Ordered Porous Silica Adsorbent with Dual Pore Size Regime for Bulky VOC Gas Sensing

  • Yun, Ji Sun;Jeong, Young Hun;Nam, Joong-Hee;Cho, Jeong-Ho;Paik, Jong-Hoo
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.181-184
    • /
    • 2013
  • Highly ordered porous materials having mesopores in the walls of macropores showed improved adsorption dynamics results for VOC molecules, especially bulky molecules. These meso/macroporous mataerials were synthesized by the dual templating method, and mesopore and macropore size were controlled by adjusting the templates for each pore size regime. In the case of adsorption and desorption of small VOC molecules (toluene), although meso/macroporous MCM-41 with smaller mesopore size showed improved results, meso/macroporous SBA-15 with larger mesopore size was not improved regardless of the existence of macropores, since there was no limitation of movement through the larger mesopore. However, the adsorption dynamics of bulky VOC molecules (p-xylene) over meso/macroporous SBA-15 were drastically improved by increasing the macropore size.

The J-aggregate of Meso substituted Thiacarbocyanines in MeOH Solution

  • 손세모
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.19 no.2
    • /
    • pp.22-29
    • /
    • 2001
  • To take an information of substitutent effect and thermodynamic of J-aggregate at thiacarbocyanines, association constant $K_{J}$ , free energy of association G$_{J}$ , enthalpies of J-aggregate H/suib J/ were measured by spectrophotometer according to dependence on concentration of dyes and temperature of aqueous MeOH and KCl salted-out system. With increase of concentration of dyes exhibited equilibria shift toward the aggregate. Phenyl meso substituted thiacarbycyanine, DyeIII, resulted in higher $K_{j}$ and G$_{J}$ values than DyeI and DyeII. To easily make J-aggregate of thiacarbocyanine, meso substutituene group need to be a flat structure, which will make a park as well as lain tiles.

  • PDF

Mesoscopic numerical analysis of reinforced concrete beams using a modified micro truss model

  • Nagarajan, Praveen;Jayadeep, U.B.;Madhavan Pillai, T.M.
    • Interaction and multiscale mechanics
    • /
    • v.3 no.1
    • /
    • pp.23-37
    • /
    • 2010
  • Concrete is a heterogeneous material consisting of coarse aggregate, mortar matrix and interfacial zones at the meso level. Though studies have been done to interpret the fracture process in concrete using meso level models, not much work has been done for simulating the macroscopic behaviour of reinforced concrete structures using the meso level models. This paper presents a procedure for the mesoscopic analysis of reinforced concrete beams using a modified micro truss model. The micro truss model is derived based on the framework method and uses the lattice meshes for representing the coarse aggregate (CA), mortar matrix, interfacial zones and reinforcement bars. A simple procedure for generating a random aggregate structure is developed using the constitutive model at meso level. The study reveals the potential of the mesoscopic numerical simulation using a modified micro truss model to predict the nonlinear response of reinforced concrete structures. The modified micro truss model correctly predicts the load-deflection behaviour, crack pattern and ultimate load of reinforced concrete beams failing under different failure modes.

Thermodynamics of Meso substituted Thiacarbocyanines in Solution

  • 손세모
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.18 no.2
    • /
    • pp.125-132
    • /
    • 2000
  • To take an information of substitutent effect and thermodynamic of association at thiacarbocyanines, association constant $K_{D}$, free energy of association $\Delta$ $G_{D}$, enthalpies of association $\Delta$ $H_{D}$ were measured by spectrophotometer according to dependence on concentration of dyes and temperature of aqueous MeOH system. With increase of concentration dyes or decrease of temperature of aqueous MeOH system, absorption spectra of dyes exhibited equlilibria shift toward the dimer. Phenyl meso substituted thiacarbicyanine, DyeIII, resulted in higher $K_{D}$ and $\Delta$ $G_{D}$ values than DyeI and DyeII. To easily make an association of thacarbicyanine, meso substutituent group need to be a flat structure, which will make a park as well as lain tiles.tiles.ructure, which will make a park as well as lain tiles.les.

  • PDF

Two-dimensional concrete meso-modeling research based on pixel matrix and skeleton theory

  • Jingwei Ying;Yujun Jian;Jianzhuang Xiao
    • Computers and Concrete
    • /
    • v.33 no.6
    • /
    • pp.671-688
    • /
    • 2024
  • The modeling efficiency of concrete meso-models close to real concrete is one of the important issues that limit the accuracy of mechanical simulation. In order to improve the modeling efficiency and the closeness of the numerical aggregate shape to the real aggregate, this paper proposes a method for generating a two-dimensional concrete meso-model based on pixel matrix and skeleton theory. First, initial concrete model (a container for placing aggregate) is generated using pixel matrix. Then, the skeleton curve of the residual space that is the model after excluding the existing aggregate is obtained using a thinning algorithm. Finally, the final model is obtained by placing the aggregate according to the curve branching points. Compared with the traditional Monte Carlo placement method, the proposed method greatly reduces the number of overlaps between aggregates by up to 95%, and the placement efficiency does not significantly decrease with increasing aggregate content. The model developed is close to the actual concrete experiments in terms of aggregate gradation, aspect ratio, asymmetry, concavity and convexity, and old-new mortar ratio, cracking form, and stress-strain curve. In addition, the cracking loss process of concrete under uniaxial compression was explained at the mesoscale.

A proposal for an approach for meso scale modeling for concrete based on rigid body spring model

  • Zhao, Chao;Shi, Zheng;Zhong, Xingu
    • Computers and Concrete
    • /
    • v.27 no.3
    • /
    • pp.283-295
    • /
    • 2021
  • Existing meso-scale models of concrete need to refine the mesh grids of aggregate and cement mortar, which may greatly reduce the computational efficiency. To overcome this problem, a novel meso-scale modeling strategy, which is based on rigid body spring method and Voronoi diagram, is proposed in this study to establish the meso-scale model of concrete. Firstly, establish numerical aggregate models according to user-defined programs. Circle aggregates are adopted due to their high efficiency in generation and packing process, and the grading of aggregate are determined according to the distribution curve proposed by Full and Thompson; Secondly, extract the centroids of aggregates, and then develop the Voronoi diagram in which aggregate centroids are defined as initial scatters; Finally, establish the rigid body spring model for concrete based on the Voronoi diagram. Aggregates are represented by rigid blocks, and assumed to be unbreakable. Cement mortar is concentrated into the interface between adjacent blocks and represented by two uniform springs. The number of grids is consistent with that of aggregates in specimens, and no mesh-refinement of aggregates and cement mortar is required. The accuracy and efficiency of the proposed modeling strategy are firstly identified by comparing the numerical results with the experimental ones, and then the applicability of the proposed strategy with different volume percentage occupied by aggregates is investigated.

Exogenous Bio-Based 2,3-Butanediols Enhanced Abiotic Stress Tolerance of Tomato and Turfgrass under Drought or Chilling Stress

  • Park, Ae Ran;Kim, Jongmun;Kim, Bora;Ha, Areum;Son, Ji-Yeon;Song, Chan Woo;Song, Hyohak;Kim, Jin-Cheol
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.5
    • /
    • pp.582-593
    • /
    • 2022
  • Among abiotic stresses in plants, drought and chilling stresses reduce the supply of moisture to plant tissues, inhibit photosynthesis, and severely reduce plant growth and yield. Thus, the application of water stress-tolerant agents can be a useful strategy to maintain plant growth under abiotic stresses. This study assessed the effect of exogenous bio-based 2,3-butanediol (BDO) application on drought and chilling response in tomato and turfgrass, and expression levels of several plant signaling pathway-related gene transcripts. Bio-based 2,3-BDOs were formulated to levo-2,3-BDO 0.9% soluble concentrate (levo 0.9% SL) and meso-2,3-BDO 9% SL (meso 9% SL). Under drought and chilling stress conditions, the application of levo 0.9% SL in creeping bentgrass and meso 9% SL in tomato plants significantly reduced the deleterious effects of abiotic stresses. Interestingly, pretreatment with levo-2,3-BDO in creeping bentgrass and meso-2,3-BDO in tomato plants enhanced JA and SA signaling pathway-related gene transcript expression levels in different ways. In addition, all tomato plants treated with acibenzolar-S-methyl (as a positive control) withered completely under chilling stress, whereas 2,3-BDO-treated tomato plants exhibited excellent cold tolerance. According to our findings, bio-based 2,3-BDO isomers as sustainable water stress-tolerant agents, levo- and meso-2,3-BDOs, could enhance tolerance to drought and/or chilling stresses in various plants through somewhat different molecular activities without any side effects.