• Title/Summary/Keyword: meso scale

Search Result 161, Processing Time 0.019 seconds

Measurement of Geometric Errors of an Ultra Precision mMT Using PSDs (PSD를 이용한 초정밀소형공작기계의 기하학적 오차 측정)

  • Kwon, Seol-Ryung;Kweon, Sung-Hwan;Yang, Seung-Han
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.1
    • /
    • pp.53-58
    • /
    • 2011
  • Ultra-precision miniaturized machine tools essential for manufacturing accurate machine components in micro/meso-scale have been developed. To realize high accuracy using mMTs, geometric errors, which are considered as the main sources of inaccuracy should be identified and compensated. The conventional systems for measuring geometric errors, such as a laser interferometer, can measure only one geometric error in a single setup and they involve complicated measurement procedures. A measurement system using PSDs is a promising alternative but the measurable range of such systems is limited to the active range of the PSDs. The proposed measurement system using PSDs can overcome the limit of small measurable range. Further, the mounting errors that could occur during set-up process can be avoided. In this paper, an algorithm corresponding to the system was analyzed and experiments were carried out.

Lateral Migration Features of the Alluvial Channels in Hapyeong Intake Station, Nakdong River (해평취수장 부근에서 충적하천의 저수로 이동 특성)

  • Jang, Chang-Lae;Lee, Gang-Man;Kim, Gye-Hyun
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.4
    • /
    • pp.395-404
    • /
    • 2008
  • It is important to understand the complex, various migration features of the alluvial channels for river engineering. In this study, the morphological changes and migration features of alluvial channels were investigated by analyzing the aerial photographs of active channels between 1972 and 2004 in Hapyeong Intake Station, Nakdong river. The lower channels were migrated from left bank to right bank and showed the features of braided channel in 2004. The instability of lower channels was increased due to the increased channel slope and width. The sinuosity of lower channels was decreased with time. As time increased, the increasing rate of lower channel and lateral migration rate were decreased. As a result of meso-scale regime analysis by using bankfull discharge, multiple row bars were developed, and suspended sediment load was governed in the flow as a sand bed channel.

Development of Real time Air Quality Prediction System

  • Oh, Jai-Ho;Kim, Tae-Kook;Park, Hung-Mok;Kim, Young-Tae
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2003.11a
    • /
    • pp.73-78
    • /
    • 2003
  • In this research, we implement Realtime Air Diffusion Prediction System which is a parallel Fortran model running on distributed-memory parallel computers. The system is designed for air diffusion simulations with four-dimensional data assimilation. For regional air quality forecasting a series of dynamic downscaling technique is adopted using the NCAR/Penn. State MM5 model which is an atmospheric model. The realtime initial data have been provided daily from the KMA (Korean Meteorological Administration) global spectral model output. It takes huge resources of computation to get 24 hour air quality forecast with this four step dynamic downscaling (27km, 9km, 3km, and lkm). Parallel implementation of the realtime system is imperative to achieve increased throughput since the realtime system have to be performed which correct timing behavior and the sequential code requires a large amount of CPU time for typical simulations. The parallel system uses MPI (Message Passing Interface), a standard library to support high-level routines for message passing. We validate the parallel model by comparing it with the sequential model. For realtime running, we implement a cluster computer which is a distributed-memory parallel computer that links high-performance PCs with high-speed interconnection networks. We use 32 2-CPU nodes and a Myrinet network for the cluster. Since cluster computers more cost effective than conventional distributed parallel computers, we can build a dedicated realtime computer. The system also includes web based Gill (Graphic User Interface) for convenient system management and performance monitoring so that end-users can restart the system easily when the system faults. Performance of the parallel model is analyzed by comparing its execution time with the sequential model, and by calculating communication overhead and load imbalance, which are common problems in parallel processing. Performance analysis is carried out on our cluster which has 32 2-CPU nodes.

  • PDF

An Analytical Method for the Evaluation of Micro-cracking in Concrete Shrinkage Induced (콘크리트의 수축으로 인한 미세균열 발생 평가를 위한 해석적 기법)

  • Song, Young-Chul;Kim, Do-Gyeum;Moon, Jae-Heum
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.1
    • /
    • pp.69-76
    • /
    • 2010
  • The majority of research that has been performed on cracking potential of concrete by shrinkage has assumed that concrete acts as a homogeneous material. However, with this approach, it is not able to evaluate the micro-cracking behavior in concrete due to autogenous shrinkage under unrestrained boundary condition (free boundary condition) nor to understand the cracking behavior properly because of the heterogeneous nature of concrete. To better understand the micro-cracking behavior of concrete induced by autogenous shrinkage, series of experiments were performed measuring the length change and acoustic emission energy. As an analytical approach, this research uses an object oriented finite element analysis code (OOF code) to simulate the behavior of the concrete on a meso-scale. The concrete images used in the simulations were directly obtained from mortar samples. From the experiments and simulation results, it was able to better understand the micro-cracking behaviour of concrete due to shrinking of paste phase and internal restraint by aggregates.

Performance comparison of rainfall and flood forecasts using short-term numerical weather prediction data from Korea and Japan (한-일 단기 수치예보자료를 이용한 강우 및 홍수 예측 성능 비교)

  • Yu, Wansik;Yoon, Seongsim;Choi, Mikyoung;Jung, Kwansue
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.8
    • /
    • pp.537-549
    • /
    • 2017
  • This study evaluated the accuracy of rainfall and flood forecasts in Sancheong basin with three rainfall events such as typhoon and stationary front by using LDAPS provided by Korea Meteorological Agency and MSM provided by Japan Meteorological Agency. In the rainfall forecast result, both LDAPS and MSM showed high forecast accuracy for wide-area prediction such as typhoon event, but local-area prediction such as stationary front has a limit to quantitative precipitation forecast (QPF). In the flood forecast result, the forecast accuracy was improved with the increase of the lead time, and it showed the possibility of LDAPS and MSM in the field of rainfall and flood forecast by linking meteorology and water resources.

Development and Evaluation of Non-Hydrous Skin Analogue Liquid Crystal using Thermo-Sensitivity Smart Sensor

  • Yoo, Kwang-Ho;Hong, Jae-Hwa;Eun, So-Hee;Jeong, Tae-Hwa;Jeong, Kwan-Young
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.3
    • /
    • pp.367-374
    • /
    • 2014
  • In this study, skin permeation enhancement was confirmed by designing it to have a structure and composition similarity to the intercellular lipids that improve miscibility with skin by cross-linked lipids poloxamer. The cross-linked lipids poloxamer was synthesized and analyzed by 1H NMR that structure dose had conjugated pluronic with ceramide3. Active component is released by modification of liquid crystal structure because PPO part, large-scale molecule block of pluronic, has hydrophobic nature at skin temperature of $35^{\circ}C$. Conjugated pluronic with ceramide3 was synthesized using Pluronic F127 and p-NPC (4-nitrophenyl chloroformate) at room temperature yielded 89%. Pluronic(Ceramide 3-conjugated Pluronic) was synthesized by reaction of p-NP-Pluronic with Ceramide3 and DMAP. The yield was 51%. This cross-linked lipids poloxamer was blended and dissolved at isotropic state with skin surface lipids, phospholipid, ceramide, cholesterol and anhydrous additive solvent. Next step was preceded by ${\alpha}$-Transition at low temperature for making the structure of Meso-Phase Lamella, and non-hydrous skin analogue liquid crystal using thermo-sensitivity smart sensor, lamellar liquid crystal structure through aging time. For confirmation of conjugation thermo-sensitivity smart sensor and non-hydrous skin analogue liquid crystal, structural observation and stability test were performed using XRD(Xray Diffraction), DSC(Differential Scanning Calorimetry), PM (Polarized Microscope) And C-SEM (Cryo-Scanning Electron Microscope). Thermo-sensitivity observation by Franz cell revealed that synthesized smart sensor shown skin permeation effect over 75% than normal liquid crystal. Furthermore, normal non-hydrous skin analogue liquid crystal that not applied smart sensor shown similar results below $35^{\circ}C$ of skin temperature, but its effects has increased more than 30% above $35^{\circ}C$.

Evaluation of Seismic Response of Masonry Walls Strengthened with Steel-bar Truss Systems by Non-linear Finite Element Analysis (비선형 유한요소 해석에 의한 강봉 트러스 시스템으로 보강된 조적벽체의 내진거동 평가)

  • Hwang, Seung-Hyeon;Yang, Keun-Hyeok;Kim, Sang-Hee;Lim, Jin-Sun;Im, Chae-Rim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.4
    • /
    • pp.20-27
    • /
    • 2021
  • The present study presents a nonlinear finite element analysis (FEA) approach using the general program of Abaqus to evaluate the seismic response of unreinforced masonry walls strengthened with the steel bar truss system developed in the previous investigation. For finite element models of masonry walls, the concrete damaged plasticity (CDP) and meso-scale methods were considered on the basis of the stress-strain relationships under compression and tension and shear friction-slip relationship of masonry prisms proposed by Yang et al. in order to formulate the interface characteristics between brick elements and mortars. The predictions obtained from the FEA approach were compared with test results under different design parameters; as a result, a good agreement could be observed with respect to the crack propagation, failure mode, rocking strength, peak strength, and lateral load-displacement relationship of masonry walls. Thus, it can be stated that the proposed FEA approach shows a good potential for designing the seismic strengthening of masonry walls.

Development of Modeling Technique and Material Prediction Method Considering Structural Characteristics of Woven Composites (직조 복합재료의 구조적 특성을 고려한 모델링 기법 및 물성 예측 기법 개발)

  • Choi, Kyung-Hee;Hwang, Yeon-Taek;Kim, Hee-June;Kim, Hak-Sung
    • Composites Research
    • /
    • v.32 no.5
    • /
    • pp.206-210
    • /
    • 2019
  • As the use of composite materials of woven structure has expanded to various fields such as automobile and aviation industry, there has been a need for reliability problems and prediction of mechanical properties of woven composites. In this study, finite element analysis for predicting the mechanical properties of composite materials with different weaving structures was conducted to verify similarity with experimental static properties and an effective modeling method was developed. To reflect the characteristics of the weave structure, the meso-scale representative volume element (RVE) was used in modeling. Three-dimensional modeling was carried out by separating the yarn and the pure matrix. Hashin's failure criterion was used to determine whether the element was failed, and the simulation model used a progressive failure model which was suitable for the composite material. Finally, the accordance of the modeling and simulation technique was verified by successfully predicting the mechanical properties of the composite material according to the weave structure.

Influence of Atmospheric Rivers on Regional Precipitation in South Korea (대기의 강이 한반도 지역별 강수에 미치는 영향)

  • Kwon, Yeeun;Park, Chanil;Back, Seung-Yoon;Son, Seok-Woo;Kim, Jinwon;Cha, Eun Jeong
    • Atmosphere
    • /
    • v.32 no.2
    • /
    • pp.135-148
    • /
    • 2022
  • This study investigates the influence of atmospheric river (AR) on precipitation over South Korea with a focus on regional characteristics. The 42-year-long catalog of ARs, which is obtained by applying the automatic AR detection algorithm to ERA5 reanalysis data and the insitu precipitation data recorded at 56 weather stations across the country are used to quantify their relationship. Approximately 51% of the climatological annual precipitation is associated with AR. The AR-related precipitation is most pronounced in summer by approximately 58%, while only limited fraction of precipitation (26%) is AR-related in winter. The heavy precipitation (> 30 mm day-1) is more prone to AR activity (59%) than weak precipitation (5~30 mm day-1; 33%) in all seasons. By grouping weather stations into the four sub-regions based on orography, it is found that the contribution of AR precipitation to the total is largest in the southern coast (57%) and smallest in the eastern coast (36%). Similar regional variations in AR precipitation fractions also occur in weak precipitation events. The regional contrast between the northern and southern stations is related to the seasonal variation of AR-frequency. In addition, the regional contrast between the western and eastern stations is partly modulated by the orographic forcing. The fractional contribution of AR to heavy precipitation exceeds 50% in all seasons, but this is true only in summer along the eastern coast. This result indicates that ARs play a critical role in heavy precipitation in South Korea, thus routine monitoring of ARs is needed for improving operational hydrometeorological forecasting.

Seismic isolation of nuclear power plant based on layered periodic foundation

  • Mi Zhao;Qun Chen;Junqi Zhang;Xiuli Du
    • Earthquakes and Structures
    • /
    • v.24 no.4
    • /
    • pp.259-274
    • /
    • 2023
  • In this paper, mechanical properties of periodic foundation made of concrete and rubber are investigated by a parametric study using the finite element method (FEM). Periodic foundation is a special type of seismic isolation foundation used in civil engineering, which is inspired by the meso-scale structure of phononic crystals in solid-state physics. This type of foundation is capable of reducing the seismic wave propagating though the foundation, therefore providing additional protection for the structures. In the FEM analysis, layered periodic foundation is frequently modelled due to its simplicity in numerical modeling. However, the isolation effect of periodic foundation on nuclear power plant has not been fully discussed to the best knowledge of authors. In this work, we construct four numerical models of nuclear power plant with different foundations to investigate the seismic isolation effects of periodic foundations. The results show that the layered periodic foundation can increase the natural period of the nuclear power plant like traditional base isolation systems, which is beneficial to the structures. In addition, the seismic response of the nuclear power plant can also be effectively reduced in both vertical and horizontal directions when the frequencies of the incident waves fall into some specific frequency bandgaps of the periodic foundation. Furthermore, it is demonstrated that the layered periodic foundation can reduce the amplitude of the floor response spectrum, which plays an important role in the protection of the equipment.