• Title/Summary/Keyword: mesenchymal stem cell (MSC)

Search Result 123, Processing Time 0.025 seconds

Effective Delivering Method of Umbilical Cord Blood Stem Cells in Cutaneous Wound Healing (제대혈 유래 중간엽 줄기 세포를 이용한 피부 창상 치료시 세포 투여 방법에 따른 창상치유 효과의 비교)

  • Park, Sang Eun;Han, Seung Bum;Rah, Dong Kyun;Lew, Dae Hyun
    • Archives of Plastic Surgery
    • /
    • v.36 no.5
    • /
    • pp.519-524
    • /
    • 2009
  • Purpose: This study was conducted to establish the most effective method of cell therapy by comparing and analyzing the level of wound healing after various cell delivery methods. Methods: Human mesenchymal stem cells were administered using 5 different methods on full thickness skin defects which were deliberately created on the back of 4 - week old mice using a 8 mm punch. Different modes of administration, cell suspension, local injection, collagen GAG matrix seeding, fibrin, and hydrogel mix methods were used. In each experiment group, $4{\times}105$ mesenchymal stem cells were administered according to 5 deferent methods, and were not for the corresponding control group. Results: The wound healing rate was fastest in the local injection group. The wound healing rate was relatively slow in the collagen matrix group, however, the number of blood vessels or VEGF increased most in this group. Conclusion: For rapid wound healing through wound contraction, it is advantageous to administer MSC by the local injection method. For the healing process of a wide area, such as a burn, the seeding of cells to collagen matrix is thought to be effective.

15-Hydroxyprostaglandin Dehydrogenase Is Associated with the Troglitazone-Induced Promotion of Adipocyte Differentiation in Human Bone Marrow Mesenchymal Stem Cells

  • Noh, Min-Soo;Lee, Soo-Hwan
    • Biomolecules & Therapeutics
    • /
    • v.18 no.1
    • /
    • pp.16-23
    • /
    • 2010
  • Adipocyte differentiation in human bone marrow mesenchymal stem cells (hBM-MSCs) is not as efficient as that in murine pre-adipocytes when induced by adipogenic agents including insulin, dexamethasone, and 3-isobutyl-1-methylxanthine (IDX condition). Therefore, the promotion of adipocyte differentiation in hBM-MSCs has been used as a cell culture model to evaluate insulin sensitivity for anti-diabetic drugs. In hBM-MSCs, $PPAR{\gamma}$ agonists or sulfonylurea anti-diabetic drugs have been added to IDX conditions to promote adipocyte differentiation. Here we show that troglitazone, a peroxisome proliferator-activated receptor-gamma ($PPAR{\gamma}$) agonist, significantly reduced the levels of anti-adipogenic $PGE_2$ in IDX-conditioned hBM-MSC culture supernatants when compared to $PGE_2$ levels in the absence of $PPAR{\gamma}$ agonist. However, there was no difference in the mRNA levels of cyclooxygenases (COXs) and the activities of COXs and prostaglandin synthases during adipocyte differentiation in hBM-MSCs with or without troglitazone. In hBM-MSCs, troglitazone significantly increased the mRNA level of 15-hydroxyprostaglandin dehydrogenase (HPGD) which can act to decrease $PGE_2$ levels in culture. These results suggest that the role of $PPAR{\gamma}$ activation in promoting adipocyte differentiation in hBM-MSCs is to reduce anti-adipogenic $PGE_2$ levels through the up-regulation of HPGD expression.

Lactoferrin Protects Human Mesenchymal Stem Cells from Oxidative Stress-Induced Senescence and Apoptosis

  • Park, Soon Yong;Jeong, Ae-Jin;Kim, Geun-Young;Jo, Ara;Lee, Joo Eon;Leem, Sun-Hee;Yoon, Joung-Hahn;Ye, Sang Kyu;Chung, Jin Woong
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.10
    • /
    • pp.1877-1884
    • /
    • 2017
  • Mesenchymal stem cells (MSCs) have been suggested as a primary candidate for cell therapy applications because they have self-renewal and differentiation capabilities. Although they can be expanded in ex vivo system, clinical application of these cells is still limited because they survive poorly and undergo senescence or apoptosis when transplanted and exposed to environmental factors such as oxidative stress. Thus, reducing oxidative stress is expected to improve the efficacy of MSC therapy. The milk protein lactoferrin is a multifunctional iron-binding glycoprotein that plays various roles, including reduction of oxidative stress. Thus, we explored the effect of lactoferrin on oxidative stress-induced senescence and apoptosis of human MSCs (hMSCs). Measurement of reactive oxygen species (ROS) revealed that lactoferrin inhibited the production of hydrogen peroxide-induced intracellular ROS, suggesting lactoferrin as a good candidate as an antioxidant in hMSCs. Pretreatment of lactoferrin suppressed hydrogen peroxide-induced senescence of hMSCs. In addition, lactoferrin reduced hydrogen peroxide-induced apoptosis via inhibition of caspase-3 and Akt activation. These results demonstrate that lactoferrin can be a promising factor to protect hMSCs from oxidative stress-induced senescence and apoptosis, thus increasing the efficacy of MSC therapy.

Effects of $CoCl_2$ on Osteogenic Differentiation of Human Mesenchymal Stem Cells

  • Moon, Yeon-Hee;Son, Jung-Wan;Moon, Jung-Sun;Kang, Jee-Hae;Kim, Sun-Hun;Kim, Min-Seok
    • International Journal of Oral Biology
    • /
    • v.38 no.3
    • /
    • pp.111-119
    • /
    • 2013
  • Objective. To investigate the effects of the hypoxia inducible factor-1 (HIF-1) activation-mimicking agent cobalt chloride ($CoCl_2$) on the osteogenic differentiation of human mesenchymal stem cells (hMSCs) and elucidate the underlying molecular mechanisms. Study design. The dose and exposure periods for $CoCl_2$ in hMSCs were optimized by cell viability assays. After confirmation of $CoCl_2$-induced HIF-$1{\alpha}$ and vascular endothelial growth factor expression in these cells by RT-PCR, the effects of temporary preconditioning with $CoCl_2$ on hMSC osteogenic differentiation were evaluated by RT-PCR analysis of osteogenic gene expression, an alkaline phosphatase (ALP) activity assay and by alizarin red S staining. Results. Variable $CoCl_2$ dosages (up to $500{\mu}M$) and exposure times (up to 7 days) on hMSC had little effect on hMSC survival. After $CoCl_2$ treatment of hMSCs at $100{\mu}M$ for 24 or 48 hours, followed by culture in osteogenic differentiating media, several osteogenic markers such as Runx-2, osteocalcin and osteopontin, bone sialoprotein mRNA expression level were found to be up-regulated. Moreover, ALP activity was increased in these treated cells in which an accelerated osteogenic capacity was also verified by alizarin red S staining. Conclusions. The osteogenic differentiation potential of hMSCs could be preserved and even enhanced by $CoCl_2$ treatment.

Regulatory Dendritic Cells Induced by Mesenchymal Stem Cells Ameliorate Dextran Sodium Sulfate-Induced Chronic Colitis in Mice

  • Jo, Hannah;Eom, Young Woo;Kim, Hyun-Soo;Park, Hong Jun;Kim, Hee Man;Cho, Mee-Yon
    • Gut and Liver
    • /
    • v.12 no.6
    • /
    • pp.664-673
    • /
    • 2018
  • Background/Aims: Regulatory dendritic cells (rDCs), which can be induced by mesenchymal stem cells (MSCs), play an important role in inducing and maintaining homeostasis of regulatory T cells and exhibit anti-inflammatory functions. In this study, we investigated whether MSCs could differentiate DCs into rDCs and compared the therapeutic effects of rDCs and MSCs on dextran sodium sulfate (DSS)-induced chronic colitis mice. Methods: Immature DCs (imDCs) and lipopolysaccharide (LPS)-treated mature DCs (mDCs) were co-cultured with MSCs for 48 hours, and then the profiles of surface markers and cytokines and regulatory roles of these DCs for primary splenocytes were analyzed. In addition, the therapeutic effects of MSCs and DCs co-cultured with MSCs were compared in chronic colitis mice. Results: After co-culture of imDCs (MSC-DCs) or LPS-treated mDCs (LPS+MSC-DCs) with MSCs, the expression of CD11c, CD80, CD86, interleukin 6 (IL-6), tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$), and interferon-${\gamma}$ (IFN-${\gamma}$), was decreased, but that of CD11b, IL-10, and transforming growth factor-${\beta}$ (TGF-${\beta}$) was increased. Furthermore, MSC-DCs and LPS+MSC-DCs induced the expression of CD4, CD25, and Foxp3 in primary splenocytes isolated from mice. In DSS-induced colitis mice, MSCs and MSC-DCs increased colon length, body weight, and survival rate and induced histological improvement. Moreover, in the colon tissues, the expression of IL-6, TNF-${\alpha}$, and IFN-${\gamma}$ decreased, but that of IL-10, TGF-${\beta}$, and Foxp3 increased in the MSC- and MSC-DC-injected groups. Conclusions: Our data suggest that MSCs differentiate DCs into rDCs, which ameliorate chronic colitis. Thus, rDCs stimulated by MSCs may be therapeutically useful for the treatment of chronic inflammatory diseases.

XENOTRANSPLANT OF HUMAN BONE MARROW STROMAL CELLS; EFFECT ON THE REGENERATION OF AXOTOMIZED INFRAORBITAL NERVE IN RATS (인간 골수 기질세포 이종이식이 백서의 축삭절단 안와하 신경 재생에 미치는 효과)

  • Park, Eun-Jin;Kim, Eun-Seok;Kim, Jin-Man;Kim, Hyun-Ok;Yum, Kwang-Won
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.31 no.3
    • /
    • pp.239-247
    • /
    • 2005
  • This study demonstrated that xenogenic human marrow mesenchymal stem cells (hMSCs) could elicit the regeneration of the sensory nerve after axotomy in the adult rats infraorbital nerves without immunosuppression. For this, we evaluated the behavioral testing for functional recovery of the nerve and histological findings at weeks 3 and 5 compared to controls. Xenogenic hMSCs did not evoke any significant inflammatory or immunologic reaction after systemic and local administrations. HMSCs-treated rats exhibited significant improvement on sensory recovery tested with von Frey monofilaments. At 5 postoperative weeks, in the hMSCs treated nerve, expression of myelin basic protein (MBP), neurofilament (NF) at the site of axotomy was higher than control. And mRNA expression of neurotropin receptor Trk precursor (TrkPre), nerve growth factor receptor (NGFR) and neuropeptide (NPY) in trigeminal ganglion were also higher. The number of myelinated nerve at distal stump and cells in trigeminal ganglion were higher in hMSC treated rats. So it was supposed that transplanted MSCs contributed to reducing post-traumatic degeneration and production of neurotrophic factors. Immunofluorescence labeling showed small portion of hMSCs (<10%) expressed a phenotypic marker of Schwann cell (S-100). Xenogenic or allogenic mesenchymal stem cells might have immune privileged characteristics and useful tool for cell based nerve repair.

Defective Self-Renewal and Differentiation of GBA-Deficient Neural Stem Cells Can Be Restored By Macrophage Colony-Stimulating Factor

  • Lee, Hyun;Bae, Jae-sung;Jin, Hee Kyung
    • Molecules and Cells
    • /
    • v.38 no.9
    • /
    • pp.806-813
    • /
    • 2015
  • Gaucher disease (GD) is an autosomal recessive lysosomal storage disorder caused by mutations in the glucocerebrosidase gene (GBA), which encodes the lysosomal enzyme glucosylceramidase (GCase). Deficiency in GCase leads to characteristic visceral pathology and lethal neurological manifestations in some patients. Investigations into neurogenesis have suggested that neurodegenerative disorders, such as GD, could be overcome or at least ameliorated by the generation of new neurons. Bone marrowderived mesenchymal stem cells (BM-MSCs) are potential candidates for use in the treatment of neurodegenerative disorders because of their ability to promote neurogenesis. Our objective was to examine the mechanism of neurogenesis by BM-MSCs in GD. We found that neural stem cells (NSCs) derived from a neuronopathic GD model exhibited decreased ability for self-renewal and neuronal differentiation. Co-culture of GBA-deficient NSCs with BM-MSCs resulted in an enhanced capacity for self-renewal, and an increased ability for differentiation into neurons or oligodendrocytes. Enhanced proliferation and neuronal differentiation of GBA-deficient NSCs was associated with elevated release of macrophage colony-stimulating factor (M-CSF) from BM-MSCs. Our findings suggest that soluble M-CSF derived from BM-MSCs can modulate GBA-deficient NSCs, resulting in their improved proliferation and neuronal differentiation.

Functional recovery after transplantation of mouse bone marrow-derived mesenchymal stem cells for hypoxic-ischemic brain injury in immature rats (저산소 허혈 뇌 손상을 유발시킨 미성숙 흰쥐에서 마우스 골수 기원 중간엽 줄기 세포 이식 후 기능 회복)

  • Choi, Wooksun;Shin, Hye Kyung;Eun, So-Hee;Kang, Hoon Chul;Park, Sung Won;Yoo, Kee Hwan;Hong, Young Sook;Lee, Joo Won;Eun, Baik-Lin
    • Clinical and Experimental Pediatrics
    • /
    • v.52 no.7
    • /
    • pp.824-831
    • /
    • 2009
  • Purpose : We aimed to investigate the efficacy of and functional recovery after intracerebral transplantation of different doses of mouse mesenchymal stem cells (mMSCs) in immature rat brain with hypoxic-ischemic encephalopathy (HIE). Methods : Postnatal 7-days-old Sprague-Dawley rats, which had undergone unilateral HI operation, were given stereotaxic intracerebral injections of either vehicle or mMSCs and then tested for locomotory activity in the 2nd, 4th, 6th, and 8th week of the stem cell injection. In the 8th week, Morris water maze test was performed to evaluate the learning and memory dysfunction for a week. Results : In the open field test, no differences were observed in the total distance/the total duration (F=0.412, P=0.745) among the 4 study groups. In the invisible-platform Morris water maze test, significant differences were observed in escape latency (F=380.319, P<0.01) among the 4 groups. The escape latency in the control group significantly differed from that in the high-dose mMSC and/or sham group on training days 2-5 (Scheffe's test, P<0.05) and became prominent with time progression (F=6.034, P<0.01). In spatial probe trial and visible-platform Morris water maze test, no significant improvement was observed in the rats that had undergone transplantation. Conclusion : Although the rats that received a high dose of mMSCs showed significant recovery in the learning-related behavioral test only, our data support that mMSCs may be used as a valuable source to improve outcome in HIE. Further study is necessary to identify the optimal dose that shows maximal efficacy for HIE treatment.

Immune inflammatory modulation as a potential therapeutic strategy of stem cell therapy for ALS and neurodegenerative diseases

  • Kim, Seung Hyun;Oh, Ki-Wook;Jin, Hee Kyung;Bae, Jae-Sung
    • BMB Reports
    • /
    • v.51 no.11
    • /
    • pp.545-546
    • /
    • 2018
  • With emerging evidence on the importance of non-cell autonomous toxicity in neurodegenerative diseases, therapeutic strategies targeting modulation of key immune cells. including microglia and Treg cells, have been designed for treatment of ALS and other neurodegenerative diseases. Strategy switching the patient's environment from a pro-inflammatory toxic to an anti-inflammatory, and neuroprotective condition, could be potential therapy for neurodegenerative diseases. Mesenchymal stem cells (MSCs) regulate innate and adaptive immune cells, through release of soluble factors such as $TGF-{\beta}$ and elevation of regulatory T cells (Tregs) and T helper-2 cells (Th2 cells), would play important roles, in the neuroprotective effect on motor neuronal cell death mechanisms in ALS. Single cycle of repeated intrathecal injections of BM-MSCs demonstrated a clinical benefit lasting at least 6 months, with safety, in ALS patients. Cytokine profiles of CSF provided evidence that BM-MSCs, have a role in switching from pro-inflammatory to anti-inflammatory conditions. Inverse correlation of $TGF-{\beta}1$ and MCP-1 levels, could be a potential biomarker to responsiveness. Thus, additional cycles of BM-MSC treatment are required, to confirm long-term efficacy and safety.

The Significance of SDF-1α-CXCR4 Axis in in vivo Angiogenic Ability of Human Periodontal Ligament Stem Cells

  • Bae, Yoon-Kyung;Kim, Gee-Hye;Lee, Jae Cheoun;Seo, Byoung-Moo;Joo, Kyeung-Min;Lee, Gene;Nam, Hyun
    • Molecules and Cells
    • /
    • v.40 no.6
    • /
    • pp.386-392
    • /
    • 2017
  • Periodontal ligament stem cells (PDLSCs) are multipotent stem cells derived from periodontium and have mesenchymal stem cell (MSC)-like characteristics. Recently, the perivascular region was recognized as the developmental origin of MSCs, which suggests the in vivo angiogenic potential of PDLSCs. In this study, we investigated whether PDLSCs could be a potential source of perivascular cells, which could contribute to in vivo angiogenesis. PDLSCs exhibited typical MSC-like characteristics such as the expression pattern of surface markers (CD29, CD44, CD73, and CD105) and differentiation potentials (osteogenic and adipogenic differentiation). Moreover, PDLSCs expressed perivascular cell markers such as NG2, ${\alpha}-smooth$ muscle actin, platelet-derived growth factor receptor ${\beta}$, and CD146. We conducted an in vivo Matrigel plug assay to confirm the in vivo angiogenic potential of PDLSCs. We could not observe significant vessel-like structures with PDLSCs alone or human umbilical vein endothelial cells (HUVECs) alone at day 7 after injection. However, when PDLSCs and HUVECs were co-injected, there were vessel-like structures containing red blood cells in the lumens, which suggested that anastomosis occurred between newly formed vessels and host circulatory system. To block the $SDF-1{\alpha}$ and CXCR4 axis between PDLSCs and HUVECs, AMD3100, a CXCR4 antagonist, was added into the Matrigel plug. After day 3 and day 7 after injection, there were no significant vessel-like structures. In conclusion, we demonstrated the perivascular characteristics of PDLSCs and their contribution to in vivo angiogenesis, which might imply potential application of PDLSCs into the neovascularization of tissue engineering and vascular diseases.