DOI QR코드

DOI QR Code

The Significance of SDF-1α-CXCR4 Axis in in vivo Angiogenic Ability of Human Periodontal Ligament Stem Cells

  • Bae, Yoon-Kyung (Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University) ;
  • Kim, Gee-Hye (Laboratory of Molecular Genetics, Dental Research Institute, School of Dentistry, Seoul National University) ;
  • Lee, Jae Cheoun (Children's Dental Center and CDC Baby Tooth Stem Cell Bank) ;
  • Seo, Byoung-Moo (Department of Oral and Maxillofacial Surgery, School of Dentistry, Seoul National University) ;
  • Joo, Kyeung-Min (Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University) ;
  • Lee, Gene (Laboratory of Molecular Genetics, Dental Research Institute, School of Dentistry, Seoul National University) ;
  • Nam, Hyun (Single Cell Network Research Center, Sungkyunkwan University School of Medicine)
  • Received : 2017.01.11
  • Accepted : 2017.04.29
  • Published : 2017.06.30

Abstract

Periodontal ligament stem cells (PDLSCs) are multipotent stem cells derived from periodontium and have mesenchymal stem cell (MSC)-like characteristics. Recently, the perivascular region was recognized as the developmental origin of MSCs, which suggests the in vivo angiogenic potential of PDLSCs. In this study, we investigated whether PDLSCs could be a potential source of perivascular cells, which could contribute to in vivo angiogenesis. PDLSCs exhibited typical MSC-like characteristics such as the expression pattern of surface markers (CD29, CD44, CD73, and CD105) and differentiation potentials (osteogenic and adipogenic differentiation). Moreover, PDLSCs expressed perivascular cell markers such as NG2, ${\alpha}-smooth$ muscle actin, platelet-derived growth factor receptor ${\beta}$, and CD146. We conducted an in vivo Matrigel plug assay to confirm the in vivo angiogenic potential of PDLSCs. We could not observe significant vessel-like structures with PDLSCs alone or human umbilical vein endothelial cells (HUVECs) alone at day 7 after injection. However, when PDLSCs and HUVECs were co-injected, there were vessel-like structures containing red blood cells in the lumens, which suggested that anastomosis occurred between newly formed vessels and host circulatory system. To block the $SDF-1{\alpha}$ and CXCR4 axis between PDLSCs and HUVECs, AMD3100, a CXCR4 antagonist, was added into the Matrigel plug. After day 3 and day 7 after injection, there were no significant vessel-like structures. In conclusion, we demonstrated the perivascular characteristics of PDLSCs and their contribution to in vivo angiogenesis, which might imply potential application of PDLSCs into the neovascularization of tissue engineering and vascular diseases.

Keywords

References

  1. Aiuti, A., Webb, I.J., Bleul, C., Springer, T., and Gutierrez-Ramos, J.C. (1997). The chemokine SDF-1 is a chemoattractant for human CD34+ hematopoietic progenitor cells and provides a new mechanism to explain the mobilization of CD34+ progenitors to peripheral blood. J. Exp. Med. 185, 111-120. https://doi.org/10.1084/jem.185.1.111
  2. Armulik, A., Abramsson, A., and Betsholtz, C. (2005). Endothelial/pericyte interactions. Circ. Res. 97, 512-523. https://doi.org/10.1161/01.RES.0000182903.16652.d7
  3. Au, P., Daheron, L.M., Duda, D.G., Cohen, K.S., Tyrrell, J.A., Lanning, R.M., Fukumura, D., Scadden, D.T., and Jain, R.K. (2008). Differential in vivo potential of endothelial progenitor cells from human umbilical cord blood and adult peripheral blood to form functional long-lasting vessels. Blood 111, 1302-1305.
  4. Chen, F.M., and Jin, Y. (2010). Periodontal tissue engineering and regeneration: current approaches and expanding opportunities. Tissue Eng. Part B Rev. 16, 219-255. https://doi.org/10.1089/ten.teb.2009.0562
  5. Corselli, M., Chen, C.W., Crisan, M., Lazzari, L., and Peault, B. (2010). Perivascular ancestors of adult multipotent stem cells. Arterioscler. Thromb. Vasc. Biol. 30, 1104-1109. https://doi.org/10.1161/ATVBAHA.109.191643
  6. Crisan, M., Yap, S., Casteilla, L., Chen, C.W., Corselli, M., Park, T.S., Andriolo, G., Sun, B., Zheng, B., Zhang, L., et al. (2008). A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 3, 301-313. https://doi.org/10.1016/j.stem.2008.07.003
  7. Du, L., Yang, P., and Ge, S. (2012). Stromal cell-derived factor-1 significantly induces proliferation, migration, and collagen type I expression in a human periodontal ligament stem cell subpopulation. J. Periodontol. 83, 379-388. https://doi.org/10.1902/jop.2011.110201
  8. Gaengel, K., Genove, G., Armulik, A., and Betsholtz, C. (2009). Endothelial-mural cell signaling in vascular development and angiogenesis. Arterioscler Thromb. Vasc. Biol. 29, 630-638. https://doi.org/10.1161/ATVBAHA.107.161521
  9. Gong, Q.M., Quan, J.J., Jiang, H.W., and Ling, J.Q. (2010). Regulation of the stromal cell-derived factor-1alpha-CXCR4 axis in human dental pulp cells. J. Endod. 36, 1499-1503. https://doi.org/10.1016/j.joen.2010.05.011
  10. Huang, C., Gu, H., Yu, Q., Manukyan, M.C., Poynter, J.A., and Wang, M. (2011). Sca-1+ cardiac stem cells mediate acute cardioprotection via paracrine factor SDF-1 following myocardial ischemia/reperfusion. PLoS One 6, e29246. https://doi.org/10.1371/journal.pone.0029246
  11. Isner, J.M., and Asahara, T. (1999). Angiogenesis and vasculogenesis as therapeutic strategies for postnatal neovascularization. J. Clin. Invest. 103, 1231-1236. https://doi.org/10.1172/JCI6889
  12. Isner, J.M., Pieczek, A., Schainfeld, R., Blair, R., Haley, L., Asahara, T., Rosenfield, K., Razvi, S., Walsh, K., and Symes, J.F. (1996). Clinical evidence of angiogenesis after arterial gene transfer of phVEGF165 in patient with ischaemic limb. Lancet 348, 370-374. https://doi.org/10.1016/S0140-6736(96)03361-2
  13. Ivanovski, S., Gronthos, S., Shi, S., and Bartold, P.M. (2006). Stem cells in the periodontal ligament. Oral. Dis. 12, 358-363. https://doi.org/10.1111/j.1601-0825.2006.01253.x
  14. Iwasaki, K., Komaki, M., Yokoyama, N., Tanaka, Y., Taki, A., Kimura, Y., Takeda, M., Oda, S., Izumi, Y., and Morita, I. (2013). Periodontal ligament stem cells possess the characteristics of pericytes. J. Periodontol. 84, 1425-1433. https://doi.org/10.1902/jop.2012.120547
  15. Jaerve, A., Schira, J. and Muller, H.W. (2012). Concise review: the potential of stromal cell-derived factor 1 and its receptors to promote stem cell functions in spinal cord repair. Stem Cells Transl. Med. 1, 732-739. https://doi.org/10.5966/sctm.2012-0068
  16. Jain, R.K., Au, P., Tam, J., Duda, D.G. and Fukumura, D. (2005). Engineering vascularized tissue. Nat. Biotechnol. 23, 821-823. https://doi.org/10.1038/nbt0705-821
  17. Jiang, L., Zhu, Y.Q., Du, R., Gu, Y.X., Xia, L., Qin, F. and Ritchie, H.H. (2008). The expression and role of stromal cell-derived factor-1alpha-CXCR4 axis in human dental pulp. J. Endod. 34, 939-944. https://doi.org/10.1016/j.joen.2008.05.015
  18. Jiang, L., Peng, W.W., Li, L.F., Yang, Y. and Zhu, Y.Q. (2012). Proliferation and multilineage potential of CXCR4-positive human dental pulp cells in vitro. J. Endod. 38, 642-647. https://doi.org/10.1016/j.joen.2011.12.028
  19. Kim, J.H., Kim, G.H., Kim, J.W., Pyeon, H.J., Lee, J.C., Lee, G. and Nam, H. (2016). In vivo angiogenic capacity of stem cells from human exfoliated deciduous teeth with human umbilical vein endothelial Cells. Mol. Cells 39, 790-796. https://doi.org/10.14348/molcells.2016.0131
  20. Lee, J.Y., Nam, H., Park, Y.J., Lee, S.J., Chung, C.P., Han, S.B., and Lee, G. (2011). The effects of platelet-rich plasma derived from human umbilical cord blood on the osteogenic differentiation of human dental stem cells. In Vitro Cell Dev. Biol. Anim. 47, 157-164.
  21. Maeda, H., Tomokiyo, A., Fujii, S., Wada, N., and Akamine, A. (2011). Promise of periodontal ligament stem cells in regeneration of periodontium. Stem Cell Res. Ther. 2, 33. https://doi.org/10.1186/scrt74
  22. Melero-Martin, J.M., Khan, Z.A., Picard, A., Wu, X., Paruchuri, S. and Bischoff, J. (2007). In vivo vasculogenic potential of human bloodderived endothelial progenitor cells. Blood 109, 4761-4768. https://doi.org/10.1182/blood-2006-12-062471
  23. Melero-Martin, J.M., De Obaldia, M.E., Kang, S.Y., Khan, Z.A., Yuan, L., Oettgen, P., and Bischoff, J. (2008). Engineering robust and functional vascular networks in vivo with human adult and cord blood-derived progenitor cells. Circ. Res. 103, 194-202. https://doi.org/10.1161/CIRCRESAHA.108.178590
  24. Mohle, R., Bautz, F., Rafii, S., Moore, M.A., Brugger, W., and Kanz, L. (1998). The chemokine receptor CXCR-4 is expressed on CD34+ hematopoietic progenitors and leukemic cells and mediates transendothelial migration induced by stromal cell-derived factor-1. Blood 91, 4523-4530.
  25. Nagatomo, K., Komaki, M., Sekiya, I., Sakaguchi, Y., Noguchi, K., Oda, S., Muneta, T., and Ishikawa, I. (2006). Stem cell properties of human periodontal ligament cells. J. Periodontal. Res. 41, 303-310. https://doi.org/10.1111/j.1600-0765.2006.00870.x
  26. Petit, I., Jin, D., and Rafii, S. (2007). The SDF-1-CXCR4 signaling pathway: a molecular hub modulating neo-angiogenesis. Trends Immunol. 28, 299-307. https://doi.org/10.1016/j.it.2007.05.007
  27. Ren, S., and Duffield, J.S. (2013). Pericytes in kidney fibrosis. Curr. Opin. Nephrol. Hypertension 22, 471-480. https://doi.org/10.1097/MNH.0b013e328362485e
  28. Seo, B.M., Miura, M., Gronthos, S., Bartold, P.M., Batouli, S., Brahim, J., Young, M., Robey, P.G., Wang, C.Y., and Shi, S. (2004). Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet 364, 149-155. https://doi.org/10.1016/S0140-6736(04)16627-0
  29. Shi, S., and Gronthos, S. (2003). Perivascular niche of postnatal mesenchymal stem cells in human bone marrow and dental pulp. J. Bone Miner. Res. 18, 696-704. https://doi.org/10.1359/jbmr.2003.18.4.696
  30. Teicher, B.A., and Fricker, S.P. (2010). CXCL12 (SDF-1)./CXCR4 pathway in cancer. Clin. Cancer Res. 16, 2927-2931. https://doi.org/10.1158/1078-0432.CCR-09-2329
  31. Trubiani, O., Isgro, A., Zini, N., Antonucci, I., Aiuti, F., Di Primio, R., Nanci, A., Caputi, S., and Paganelli, R. (2008). Functional interleukin-7/interleukin-7Ralpha, and SDF-1alpha/CXCR4 are expressed by human periodontal ligament derived mesenchymal stem cells. J. Cell Physiol. 214, 706-713. https://doi.org/10.1002/jcp.21266
  32. Trubiani, O., Giacoppo, S., Ballerini, P., Diomede, F., Piattelli, A., Bramanti, P., and Mazzon, E. (2016). Alternative source of stem cells derived from human periodontal ligament: a new treatment for experimental autoimmune encephalomyelitis. Stem Cell Res Ther. 7, 1. https://doi.org/10.1186/s13287-015-0253-4
  33. Wada, N., Menicanin, D., Shi, S., Bartold, P.M., and Gronthos, S. (2009). Immunomodulatory properties of human periodontal ligament stem cells. J. Cell Physiol. 219, 667-676. https://doi.org/10.1002/jcp.21710
  34. Wada, N., Gronthos, S., and Bartold, P.M. (2013). Immunomodulatory effects of stem cells. Periodontol. 2000 63, 198-216. https://doi.org/10.1111/prd.12024
  35. Wang, K., Zhao, X., Kuang, C., Qian, D., Wang, H., Jiang, H., Deng, M., and Huang, L. (2012). Overexpression of SDF-1alpha enhanced migration and engraftment of cardiac stem cells and reduced infarcted size via CXCR4/PI3K pathway. PLoS One 7, e43922. https://doi.org/10.1371/journal.pone.0043922
  36. Zemani, F., Silvestre, J.S., Fauvel-Lafeve, F., Bruel, A., Vilar, J., Bieche, I., Laurendeau, I., Galy-Fauroux, I., Fischer, A.M., and Boisson-Vidal, C. (2008). Ex vivo priming of endothelial progenitor cells with SDF-1 before transplantation could increase their proangiogenic potential. Arterioscler Thromb. Vasc. Biol. 28, 644-650. https://doi.org/10.1161/ATVBAHA.107.160044
  37. Zhu, W., and Liang, M. (2015). Periodontal ligament stem cells: current status, concerns, and future prospects. Stem Cells Int. 2015, 972313.

Cited by

  1. Insights into Endothelial Progenitor Cells: Origin, Classification, Potentials, and Prospects vol.2018, pp.1687-9678, 2018, https://doi.org/10.1155/2018/9847015
  2. Periodontal Ligament Stem Cells: Current Knowledge and Future Perspectives vol.28, pp.15, 2019, https://doi.org/10.1089/scd.2019.0025
  3. Protein post-translational modifications in bacteria vol.17, pp.11, 2017, https://doi.org/10.1038/s41579-019-0243-0
  4. Immunosuppressive Property of MSCs Mediated by Cell Surface Receptors vol.11, pp.None, 2017, https://doi.org/10.3389/fimmu.2020.01076
  5. Assessing the effects of cyclosporine A on the osteoblastogenesis, osteoclastogenesis, and angiogenesis mediated by human periodontal ligament stem cells vol.91, pp.6, 2017, https://doi.org/10.1002/jper.19-0168
  6. Engineered Prevascularization for Oral Tissue Grafting: A Systematic Review vol.26, pp.4, 2017, https://doi.org/10.1089/ten.teb.2020.0093
  7. Angiogenic Effects of Secreted Factors from Periodontal Ligament Stem Cells vol.9, pp.1, 2021, https://doi.org/10.3390/dj9010009
  8. Transcriptome analysis reveals the mechanism of stromal cell-derived factor-1 and exendin-4 synergistically promoted periodontal ligament stem cells osteogenic differentiation vol.9, pp.None, 2017, https://doi.org/10.7717/peerj.12091
  9. Proteoglycans in the periodontium: A review with emphasis on specific distributions, functions, and potential applications vol.56, pp.4, 2017, https://doi.org/10.1111/jre.12847
  10. SDF‐1 modulates periodontal ligament‐Mesenchymal Stem Cells (pdl‐MSCs) vol.56, pp.4, 2021, https://doi.org/10.1111/jre.12876