• 제목/요약/키워드: mesangial cells

검색결과 54건 처리시간 0.029초

위령탕(胃苓湯) 추출물의 사람 유래 신장 메산지움 세포에서의 당뇨병성 신장 손상 개선 효과 (Wiryeongtang attenuates diabetic renal dysfunction in human renal mesangial cells)

  • 윤정주;한병혁;최은식;남궁승;정다혜;김혜윰;안유미;이윤정;강대길;이호섭
    • 대한본초학회지
    • /
    • 제31권5호
    • /
    • pp.71-78
    • /
    • 2016
  • Objectives : Diabetic nephropathy is one of the most common chronic complications of diabetes and a leading cause of end-stage renal failure in the world. Mesangial cell proliferation is known as the major pathologic features such as glomerulosclerosis and renal fibrosis. Wiryeongtang (WRT) is a well-known traditional herbal formula as therapeutic agents for chronic edema and dysuresia of renal homeostasis. In the present study, we investigated whether WRT inhibits high glucose (HG)-induced renal dysfunction by TGF-β/Smads signal regulation in cultured mesangial cells.Methods : Inhibitory effect of WRT (10-50 ㎍/ml) on HG-stimulated mesangial cells proliferation and dysfunction were evaluated by [3H]-thymidine incorporation, Western blot, and RT-qPCR.Results : WRT significantly decreased HG-accelerated thymidine incorporation in human renal mesangial cell in a dose-dependent levels. WRT induced down-regulation of cyclins/CDKs and up-regulation of CDK inhibitor, p21waf1/cip1 and p27kip1 expression. In addition, HG enhanced expression of dysfunction biomarker such as collagen IV and CTGF, which was markedly attenuated by WRT. WRT decreased TGF-β1 and Smad-2/Smad-4 expression, whereas increased Smad-7 expression under HG. Furthermore, WRT inhibited HG-induced inflammatory factors level such as ICAM-1 and MCP-1 as well as NF-κB p65 nuclear translocation and intracellular ROS production.Conclusions : These results suggested that WRT may alleviate mesangial proliferation and inflammation possibly involved in renal fibrotic process, further diabetic nephropathy through disturbing TGF-β1/Smad signaling and NF-κB/ROS pathway. Thus, WRT might prove to be effective in the treatment of renal dysfunction leading to diabetic nephropathy.

Sp1 Decoy Oligodeoxynucleotides에 의한 사구체 혈관간세포 증식억제 효과 (Sp1 Decoy Oligodeoxynucleotides Inhibit Serum-induced Mesangial Cell Proliferation)

  • 채영미;김성영;박관규;장영제
    • KSBB Journal
    • /
    • 제19권5호
    • /
    • pp.335-340
    • /
    • 2004
  • Mesangial expansion caused by cell proliferation and glomerular extracellular matrix accumulation is one of the earliest renal abnormalties observed at the onset of hyperglycemia in diabetes mellitus. Transcription factor Sp1 is implicated in the transcriptional regulation of a wide range of genes participating in cell proliferation, and is assumed to play an essential role in mesangial expansion, transforming growth factor (TGF)-$\beta$1, plasminogen activator inhibitor (PAI)-1. We have generated a phosphorothioated double-stranded Sp1-decoy oligodeoxynucleotide that effectively blocks Sp1 binding to the promoter region for transcriptional regulation of TGF-$\beta$1 and PAI-1. The Sp1 decoy oligodeoxynucleotide suppressed transcription of these cytokines and proliferation of primary rat mesangial cells in response to serum stimulation. These results suggest that the Sp1 decoy oligodeoxynucleotide could bea powerful tool in preventing the pathogenesis of renal hypertrophy.

갈근(葛根)과 숙지황(熟地黃) 추출물의 cisplatin에 의한 rat mesangial cell의 apoptosis에 대한 보호효과 (Preventive Effect of Puerariae Radix and Rehmanniae Radix Preparata on Cisplatin-induced Rat Mesangial Cell Apoptosis)

  • 주성민;박진모;전병제;양현모;홍재의;김인규;김원신;전병훈
    • 동의생리병리학회지
    • /
    • 제22권5호
    • /
    • pp.1140-1146
    • /
    • 2008
  • One of the major side effects of cisplatin is nephrotoxicity, leading to acute renal failure. Recent study has suggested a role of hydroxyl radicals and p53 in renal cell injury by cisplatin. This study determined the possible involvement of oxidative stress in p53 activation. In rat mesangial cells, cisplatin treatment induced apoptosis and p53 activation. Pifithrin-$\alpha$, a pharmacological inhibitor of p53, suppressed cisplatin-induced apoptosis. Cisplatin also induced reactive oxidative species (ROS) generation. Of interest, cisplatin-induced apoptosis was prevented by N-acetyl-cysteine (NAC), a general antioxidant. NAC diminished p53 activation during cisplatin treatment. Puerariae Radix and Rehmanniae Radix Preparata with antioxidative activity were reduced the cisplatin-induced ROS generation, caspase-3 activity and p53 activation. In conclusion, ROS may contribute to p53 activation to initiate cisplatin-induced apoptosis in rat mesangial cells. In result, antioxidative effect of Puerariae Radix and Rehmanniae Radix Preparata prevented cisplatin-induced apoptosis through inhibition of p53 activation.

Modulation of Cell Proliferation and Hypertrophy by Gangliosides in Cultured Human Glomerular Mesangial Cells

  • Lee Seoul;Ahn Seon Ho;Baek Seung Hoon;Song Ju Hung;Choo Young Kug;Kwon Oh Deog;Choi Bong Kyu;Jung Kyu Yong
    • Archives of Pharmacal Research
    • /
    • 제28권8호
    • /
    • pp.948-955
    • /
    • 2005
  • Glomerular mesangial cells (GMCs) in diverse renal diseases undergo cell proliferation and/or hypertrophy, and gangliosides have been reported to play an important role in modulating cell structure and function. This study compared the effects of transforming growth $factor-\beta\; (TGF­\beta1)$ and the effects of the application of exogenous gangliosides on GMCs and investigated whether the application of exogenous gangliosides regulated cellular proliferation and hypertrophy. Human GMCs were cultured with exogenous gangliosides and $TGF-\beta1$ in a media containing $10\%$ fetal bovine serum and in a media without the fetal bovine serum. Exogenous gangliosides biphasically changed the proliferation of human GMCs (0.1-1.0 mg/mL). A low concentration (0.1 mg/mL) of gangliosides mainly increased the number of human GMCs, whereas cellular proliferation was significantly reduced by raising the concentration of exogenous gangliosides. $TGF-\beta1$ greatly reduced the number of human GMCs in a concentration­dependent manner (1-10 ng/mL). Serum deprivation accelerated the gangliosides- and $TGF­\beta1-induced$ inhibition of mesangial cell proliferation to a greater extent. Gangliosides (1.0 mg/ mL) and $TGF-\beta1$ (10 ng/mL) both caused a significant increase in the incorporation of $[^3H]leucine$ per cell in the serum-deprived condition, whereas it was completely reversed in serum­supplemented condition. Similar results to the $[^3H]leucine$ incorporation were also observed in the changes in cell size measured by flow cytometric analysis. These results show that exogenous gangliosides modulate cell proliferation and hypertrophy in cultured human GMCs, and these cellular responses were regulated differently based on whether the media contained serum or not. Results from the present study raise new possibilities about the potential involvement of gangliosides in the development of mesangial cell proliferation and hypertrophy.

Agmatine Reduces Hydrogen Peroxide in Mesangial Cells under High Glucose Conditions

  • Lee, Geun-Taek;Ha, Hun-Joo;Lee, Hyun-Chul;Cho, Young-Dong
    • BMB Reports
    • /
    • 제36권3호
    • /
    • pp.251-257
    • /
    • 2003
  • Agmatine, an amine and organic cation, reduced $H_2O_2$ that was generated by hyperglycemia, and transcription factors such as NF-${\kappa}B$ and AP-1 activity in the mesangial cells that were exposed to high glucose. However, spermine which shares a strong nucleophilic structure with agmatine decreased the $H_2O_2$ levels and AP-1, but not the NF-${\kappa}B$ activity. Possible roles for agmatine and spermine in decreasing fibronectin are discussed, and the signaling pathway for agmatine-reduced fibronectin accumulation is presented.

오령산에 의한 고포도당 유도 사구체간질세포 이상증식 개선효과 (Oryeong-san Ameliorates High Glucose-induced Mesangial Cell Proliferation)

  • 윤정주;이윤정;이소민;김대환;이호섭;강대길
    • 대한한의학방제학회지
    • /
    • 제21권2호
    • /
    • pp.53-62
    • /
    • 2013
  • Objectives : Diabetic nephropathy is associated with morbidity and mortality of diabetes mellitus patients. Mesangial cell proliferation is known as the major pathologic features such as glomerulosclerosis. Oryeong-san, Korean formula, is widely used for the treatment of nephrosis, edema, and uremia. Oryeong-san is composed of five herbs: Alismatis Rhizoma, Polyporus, Atractylodis Rhizoma Alba, Hoelen, and Cinnamomi Cortex. Methods : The present study was performed to investigate potent inhibitory effect of Oryeong-san on high glucose (HG)-induced rat mesangial cells (RMC) proliferation. Results : RMC proliferation under 25 mM glucose was significantly accelerated compared with 5.5 mM glucose, which was inhibited by Oryeong-san in dose dependent manner. Pre-treatment of Oryeong-san induced down-regulation of cyclins/CDKs and up-regulation of CDK inhibitor, p21waf1/cip1 and p27kip1 expression. In addition, Oryeong-san reduced HG-induced RMC proliferation by suppressed the mitogen-activated protein kinase (MAPK) phospholyration such as extracellular signal regulated kinase (ERK), Jun N-terminal Kinase (JNK), and p38. Oryeong-san significantly suppressed HG-induced ROS production. Conclusions : Oryeong-san consequently inhibited HG-induced mesangial cell proliferation through the inhibition of MAPK and ROS signaling pathway. These results suggest that Oryeong-san may be effective in the treatment of renal dysfunction leading to diabetic nephropathy.

Effects of Free Anthraquinones Extract from the Rhubarb on Cell Proliferation and Accumulation of Extracellular Matrix in High Glucose Cultured-Mesangial Cells

  • Wang, Jianyun;Fang, Hui;Dong, Bingzheng;Wang, Dongdong;Li, Yan;Chen, Xiao;Chen, Lijuan;Wei, Tong;Wei, Qunli
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제19권6호
    • /
    • pp.485-489
    • /
    • 2015
  • Diabetic nephropathy (DN) is the leading cause of end-stage failure of the kidney, but the efficacy of currently available strategies for the prevention of DN remains unsatisfactory. In this study, we investigated the effects of free anthraquinones (FARs) extract, which was extracted from the rhubarb and purified by macroporous resin DM130 with gradient mixtures of ethanol/water as the lelution solvents, in high glucose-cultured glomerular mesangial cells (MCs). The cell proliferation was determined by CCK-8 assay, the levels of TGF-${\beta}1$, CTGF, ColIV and FN proteins in the supernatant of MCs were measured by ELISA assays, and the mRNA levels of these four genes were detected by RT-PCR. The results showed that the increased proliferation of MCs, the mRNA levels and protein expression of TGF-${\beta}1$, CTGF, ColIV and FN induced by high glucose were inhibited after the treatment with the FARs extract. This indicated that FARs extract could inhibit cell proliferation and the expression of main extracellular matrix induced by high glucose in MCs. The FARs extract exhibited potential values for prophylaxis and therapy of DN.

Regulator of Calcineurin 1 Isoform 4 (RCAN1.4) Is Overexpressed in the Glomeruli of Diabetic Mice

  • Jang, Cho-Rong;Lim, Ji-Hee;Park, Cheol-Whee;Cho, Young-Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제15권5호
    • /
    • pp.299-305
    • /
    • 2011
  • Calcineurin (CaN) is activated in diabetes and plays a role in glomerular hypertrophy and extracellular matrix (ECM) accumulation. Here, kidneys from diabetic model mice were investigated for the expression of the regulator of CaN 1 (RCAN1) isoform 4 (RCAN1.4) which had been shown to be transcriptionally upregulated by CaN activation. We found the increased immunoreactivity for RCAN1 in the glomerular cells of db/db mice and streptozotocin-induced diabetic mice. In concordance, the expression of RCAN1 protein and RCAN1.4 mRNA were elevated in the whole kidney sample from db/db mice. Interleukin-$1{\beta}$ (IL-$1{\beta}$), tumor necrosis factor-${\alpha}$, and glycated albumin (AGE-BSA) were identified as inducers of RCAN1.4 in mesangial cells. Pretreatment of cyclosporine A blocked the increases of RCAN1.4 stimulated by IL-$1{\beta}$ or AGE-BSA, suggesting that activation of CaN is required for the RCAN1.4 induction. Stable transfection of RCAN1.4 in Mes-13 mesangial cells upregulated several factors relevant to ECM production and degradation. These results suggested that RCAN1.4 might act as a link between CaN activation and ECM turnover in diabetic nephropathy.

Cytokine expression and localization during the development of glomerulosclerosis in FGS mice

  • Park, Sang-Joon;Lee, Sae-Bom;Lee, Young-Ho;Ryu, Si-Yun;Jeong, Kyu-Shik;Lee, Cha-Soo
    • 한국수의병리학회지
    • /
    • 제3권1호
    • /
    • pp.15-25
    • /
    • 1999
  • To elucidate the mechanism of age-related development in FGS/NgaKIST mice with spontaneous glomerulosclerotic lesion, we examined expression and localization of various cytokine mRNA in the kidney in the progression of diseases. This mouse model is the first to develop spontanously occuring glomerosclerotic lesion in the kidney. In this study, we detected the up-regulation of local cytokine genes such as IL-1$\beta$, IL-2, IL-6, IL-10, TNF-$\alpha$, TGF-$\beta$, and IFN- $\gamma$ in the kidneys. In RT-PCR and Southern blot analysis, we detected gradual expressions of cytokine mRNA of IL-1$\beta$, IL-2, IL-6, IFN- $\gamma$, and TNF $\alpha$ mRNA during the course of disease. Other cytokines including IL -10 and TGF -$\beta$ were found to be appeared the slightly expressed level at 3 to 12 weeks before onset of inflammatory lesion but they are highly expressed at the end-stage of the disease accompaning high proteinurea and wasting. In situ RT-PCR, each cytokine mRNA were specifically localized in a variety of cells including mesangial, endothelial, parietal epithelial, tubular epithelial, arterial muscle cell, and infiltrated inflammatory cells. In addition, TNF - $\alpha$was detected moderately in the visceral and parietal epithelial cell, but weakly in endothelial and mesangial cells, whereas IL-1 $\beta$ and IL -6 were strong in mesangial regions. IL-6 and TNF- $\alpha$ was highly localized in the damaged proximal and collecting tubules. Especially, TGF -$\beta$ mRNA was highly found in mesangial cells within glomerulus and interstitium during the end-stage of this disease.. These results indicate that pro inflammatory cytokines such as IL-1 $\beta$, IL-2, IL-6, and TNF- $\alpha$ were gradually expressed from the early stage of this disease to the end-stage, and that IL-10 and TGF-$\beta$ may be important in the accumulation of extracellular matrix(ECM) within glomerulus and periglomerular fibrosis in the progression of this disease as well as tissue destruction in end-stage of this disease.

  • PDF

Sodium butyrate has context-dependent actions on dipeptidyl peptidase-4 and other metabolic parameters

  • Lee, Eun-Sol;Lee, Dong-Sung;Pandeya, Prakash Raj;Kim, Youn-Chul;Kang, Dae-Gil;Lee, Ho-Sub;Oh, Byung-Chul;Lee, Dae Ho
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제21권5호
    • /
    • pp.519-529
    • /
    • 2017
  • Sodium butyrate (SB) has various metabolic actions. However, its effect on dipeptidyl peptidase 4 (DPP-4) needs to be studied further. We aimed to evaluate the metabolic actions of SB, considering its physiologically relevant concentration. We evaluated the effect of SB on regulation of DPP-4 and its other metabolic actions, both in vitro (HepG2 cells and mouse mesangial cells) and in vivo (high fat diet [HFD]-induced obese mice). Ten-week HFD-induced obese C57BL/6J mice were subjected to SB treatment by adding SB to HFD which was maintained for an additional 16 weeks. In HepG2 cells, SB suppressed DPP-4 activity and expression at sub-molar concentrations, whereas it increased DPP-4 activity at a concentration of $1,000{\mu}M$. In HFD-induced obese mice, SB decreased blood glucose, serum levels of insulin and $IL-1{\beta}$, and DPP-4 activity, and suppressed the increase in body weight. On the contrary, various tissues including liver, kidney, and peripheral blood cells showed variable responses of DPP-4 to SB. Especially in the kidney, although DPP-4 activity was decreased by SB in HFD-induced obese mice, it caused an increase in mRNA expression of $TNF-{\alpha}$, IL-6, and $IL-1{\beta}$. The pro-inflammatory actions of SB in the kidney of HFD-induced obese mice were recapitulated by cultured mesangial cell experiments, in which SB stimulated the secretion of several cytokines from cells. Our results showed that SB has differential actions according to its treatment dose and the type of cells and tissues. Thus, further studies are required to evaluate its therapeutic relevance in metabolic diseases including diabetes and obesity.