• Title/Summary/Keyword: mental state classification

Search Result 22, Processing Time 0.024 seconds

Classification of Mental States Based on Spatiospectral Patterns of Brain Electrical Activity

  • Hwang, Han-Jeong;Lim, Jeong-Hwan;Im, Chang-Hwan
    • Journal of Biomedical Engineering Research
    • /
    • v.33 no.1
    • /
    • pp.15-24
    • /
    • 2012
  • Classification of human thought is an emerging research field that may allow us to understand human brain functions and further develop advanced brain-computer interface (BCI) systems. In the present study, we introduce a new approach to classify various mental states from noninvasive electrophysiological recordings of human brain activity. We utilized the full spatial and spectral information contained in the electroencephalography (EEG) signals recorded while a subject is performing a specific mental task. For this, the EEG data were converted into a 2D spatiospectral pattern map, of which each element was filled with 1, 0, and -1 reflecting the degrees of event-related synchronization (ERS) and event-related desynchronization (ERD). We evaluated the similarity between a current (input) 2D pattern map and the template pattern maps (database), by taking the inner-product of pattern matrices. Then, the current 2D pattern map was assigned to a class that demonstrated the highest similarity value. For the verification of our approach, eight participants took part in the present study; their EEG data were recorded while they performed four different cognitive imagery tasks. Consistent ERS/ERD patterns were observed more frequently between trials in the same class than those in different classes, indicating that these spatiospectral pattern maps could be used to classify different mental states. The classification accuracy was evaluated for each participant from both the proposed approach and a conventional mental state classification method based on the inter-hemispheric spectral power asymmetry, using the leave-one-out cross-validation (LOOCV). An average accuracy of 68.13% (${\pm}9.64%$) was attained for the proposed method; whereas an average accuracy of 57% (${\pm}5.68%$) was attained for the conventional method (significance was assessed by the one-tail paired $t$-test, $p$ < 0.01), showing that the proposed simple classification approach might be one of the promising methods in discriminating various mental states.

Factors Affecting Mental Health among College Students - Sassang Constitution and Ego State centered Approach- (대학생의 정신건강에 영향을 주는 요인 - 사상체질과 자아상태를 중심으로 -)

  • Kim, Myoung-Hee
    • Journal of Korean Public Health Nursing
    • /
    • v.27 no.3
    • /
    • pp.564-577
    • /
    • 2013
  • Purpose: The purpose of this study was to address differences between mental health according to sasang constitution and ego state among college students. Methods: Data for this cross-sectional study were collected by administration of questionnaires eliciting Woo's ego state scale, QSCC II for the sasang constitution classification, and SCL-90-R for mental health to 393 college students. Analysis was performed using IBM SPSS (version 19.0). Results: The Free Child ego and Adapted Child ego differed significantly among sasang types. The ego-gram pattern of So-eum type exhibited the N pattern (Nurturing Parent (NP)>Adapted Child (AC)>Adult (A)>Free Child (FC)>Critical Parent (CP), AC-high type), however, the ego-gram pattern of other constitution types showed the M pattern (NP>FC>A>AC>CP). No statistically significant differences in mental health were observed among sasang types, however, among ego states, AC and CP showed negative correlation with mental health status. Between So-eum type and So-yang type, AC was the factor predicting mental health. Between Tae-eum type and undefined type, AC and CP were factors predicting mental health. Conclusion: These findings suggest that sasang constitution could be an important factor in understanding the ego state and mental health status. We conclude that sasang constitution should be considered in interpretation of mental health status presentation in clients.

Classification System of EEG Signals for Mental Action (정신활동에 의한 EEG신호의 분류시스템)

  • 김민수;김기열;정대영;서희돈
    • Proceedings of the IEEK Conference
    • /
    • 2003.07c
    • /
    • pp.2875-2878
    • /
    • 2003
  • In this paper, we propose an EEG-based mental state prediction method during a mental tasks. In the experimental task, a subject goes through the process of responding to visual stimulus, understanding the given problem, controlling hand motions, and hitting a key. Considering the subject's varying brain activities, we model subjects' mental states with defining selection time. EEG signals from four subjects were recorded while they performed three mental tasks. Feature vectors defined by these representations were classified with a standard, feed-forward neural network trained via the error back-propagation algorithm. We expect that the proposed detection method can be a basic technology for brain-computer interface by combining with left/right hand movement or cognitive decision discrimination methods.

  • PDF

Arousal and Valence Classification Model Based on Long Short-Term Memory and DEAP Data for Mental Healthcare Management

  • Choi, Eun Jeong;Kim, Dong Keun
    • Healthcare Informatics Research
    • /
    • v.24 no.4
    • /
    • pp.309-316
    • /
    • 2018
  • Objectives: Both the valence and arousal components of affect are important considerations when managing mental healthcare because they are associated with affective and physiological responses. Research on arousal and valence analysis, which uses images, texts, and physiological signals that employ deep learning, is actively underway; research investigating how to improve the recognition rate is needed. The goal of this research was to design a deep learning framework and model to classify arousal and valence, indicating positive and negative degrees of emotion as high or low. Methods: The proposed arousal and valence classification model to analyze the affective state was tested using data from 40 channels provided by a dataset for emotion analysis using electrocardiography (EEG), physiological, and video signals (the DEAP dataset). Experiments were based on 10 selected featured central and peripheral nervous system data points, using long short-term memory (LSTM) as a deep learning method. Results: The arousal and valence were classified and visualized on a two-dimensional coordinate plane. Profiles were designed depending on the number of hidden layers, nodes, and hyperparameters according to the error rate. The experimental results show an arousal and valence classification model accuracy of 74.65 and 78%, respectively. The proposed model performed better than previous other models. Conclusions: The proposed model appears to be effective in analyzing arousal and valence; specifically, it is expected that affective analysis using physiological signals based on LSTM will be possible without manual feature extraction. In a future study, the classification model will be adopted in mental healthcare management systems.

Making Thoughts Real - a Machine Learning Approach for Brain-Computer Interface Systems

  • Tengis Tserendondog;Uurstaikh Luvsansambuu;Munkhbayar Bat-Erdende;Batmunkh Amar
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.15 no.2
    • /
    • pp.124-132
    • /
    • 2023
  • In this paper, we present a simple classification model based on statistical features and demonstrate the successful implementation of a brain-computer interface (BCI) based light on/off control system. This research shows study and development of light on/off control system based on BCI technology, which allows the users to control switching a lamp using electroencephalogram (EEG) signals. The logistic regression algorithm is used for classification of the EEG signal to convert it into light on, light off control commands. Training data were collected using 14-channel BCI system which records the brain signals of participants watching a screen with flickering lights and saves the data into .csv file for future analysis. After extracting a number of features from the data and performing classification using logistic regression, we created commands to switch on a physical lamp and tested it in a real environment. Logistic regression allowed us to quite accurately classify the EEG signals based on the user's mental state and we were able to classify the EEG signals with 82.5% accuracy, producing reliable commands for turning on and off the light.

Assessment of Classification Accuracy of fNIRS-Based Brain-computer Interface Dataset Employing Elastic Net-Based Feature Selection (Elastic net 기반 특징 선택을 적용한 fNIRS 기반 뇌-컴퓨터 인터페이스 데이터셋 분류 정확도 평가)

  • Shin, Jaeyoung
    • Journal of Biomedical Engineering Research
    • /
    • v.42 no.6
    • /
    • pp.268-276
    • /
    • 2021
  • Functional near-infrared spectroscopy-based brain-computer interface (fNIRS-based BCI) has been receiving much attention. However, we are practically constrained to obtain a lot of fNIRS data by inherent hemodynamic delay. For this reason, when employing machine learning techniques, a problem due to the high-dimensional feature vector may be encountered, such as deteriorated classification accuracy. In this study, we employ an elastic net-based feature selection which is one of the embedded methods and demonstrate the utility of which by analyzing the results. Using the fNIRS dataset obtained from 18 participants for classifying brain activation induced by mental arithmetic and idle state, we calculated classification accuracies after performing feature selection while changing the parameter α (weight of lasso vs. ridge regularization). Grand averages of classification accuracy are 80.0 ± 9.4%, 79.3 ± 9.6%, 79.0 ± 9.2%, 79.7 ± 10.1%, 77.6 ± 10.3%, 79.2 ± 8.9%, and 80.0 ± 7.8% for the various values of α = 0.001, 0.005, 0.01, 0.05, 0.1, 0.2, and 0.5, respectively, and are not statistically different from the grand average of classification accuracy estimated with all features (80.1 ± 9.5%). As a result, no difference in classification accuracy is revealed for all considered parameter α values. Especially for α = 0.5, we are able to achieve the statistically same level of classification accuracy with even 16.4% features of the total features. Since elastic net-based feature selection can be easily applied to other cases without complicated initialization and parameter fine-tuning, we can be looking forward to seeing that the elastic-based feature selection can be actively applied to fNIRS data.

Enhancing Alzheimer's Disease Classification using 3D Convolutional Neural Network and Multilayer Perceptron Model with Attention Network

  • Enoch A. Frimpong;Zhiguang Qin;Regina E. Turkson;Bernard M. Cobbinah;Edward Y. Baagyere;Edwin K. Tenagyei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.11
    • /
    • pp.2924-2944
    • /
    • 2023
  • Alzheimer's disease (AD) is a neurological condition that is recognized as one of the primary causes of memory loss. AD currently has no cure. Therefore, the need to develop an efficient model with high precision for timely detection of the disease is very essential. When AD is detected early, treatment would be most likely successful. The most often utilized indicators for AD identification are the Mini-mental state examination (MMSE), and the clinical dementia. However, the use of these indicators as ground truth marking could be imprecise for AD detection. Researchers have proposed several computer-aided frameworks and lately, the supervised model is mostly used. In this study, we propose a novel 3D Convolutional Neural Network Multilayer Perceptron (3D CNN-MLP) based model for AD classification. The model uses Attention Mechanism to automatically extract relevant features from Magnetic Resonance Images (MRI) to generate probability maps which serves as input for the MLP classifier. Three MRI scan categories were considered, thus AD dementia patients, Mild Cognitive Impairment patients (MCI), and Normal Control (NC) or healthy patients. The performance of the model is assessed by comparing basic CNN, VGG16, DenseNet models, and other state of the art works. The models were adjusted to fit the 3D images before the comparison was done. Our model exhibited excellent classification performance, with an accuracy of 91.27% for AD and NC, 80.85% for MCI and NC, and 87.34% for AD and MCI.

The Classification Scheme of ADHD for children based on the CNN Model (CNN 모델 기반의 소아 ADHD 분류 기법)

  • Kim, Do-Hyun;Park, Seung-Min;Kim, Dong-Hyun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.5
    • /
    • pp.809-814
    • /
    • 2022
  • ADHD is a disorder showing inattentiveness and hyperactivity. Since symptoms diagnosed in childhood continue to the adulthood, it is important to diagnose ADHD and start treatments in early stages. However, it has the problems to acquire enough and accurate data for the diagnosis because the mental state of children is immature using the self-diagnosis method or the computerized test. In this paper, we present the classification method based on the CNN model and execute experiment using the EEG data to improve the objectiveness and the accuracy of ADHD diagnosis. For the experiment, we build the 3D convolutional networks model and exploit the 5-folds cross validation method. The result shows the 97% accuracy on average.

Editorial for Vol. 30, Issue 3 (편집자 주 - 30권 3호)

  • Kim, Young Hyo
    • Korean journal of aerospace and environmental medicine
    • /
    • v.30 no.3
    • /
    • pp.83-85
    • /
    • 2020
  • In commemoration of Vol. 30, Issue 3, our journal prepared five review articles and one original paper. The global outbreak of COVID-19 in 2020 has impacted our society, and especially the aviation and travel industries have been severely damaged. Kwon presented the aviation medical examination regulations related to COVID-19 announced by the Ministry of Land, Infrastructure, and Transport of the Republic of Korea. Lim summarized various efforts of airlines to overcome the crisis in the aviation industry. He also discussed the management of these aircraft as the number of airplanes landing for long periods increased. Finally, he suggested various quarantine guidelines at airports and onboard aircraft. COVID-19 has had a profound impact on mental health as well as physical effects. Kim investigated the impact of COVID-19 on mental health and suggested ways to manage the stress caused by it. The Internet of Things (IoT) refers to a technology in which devices communicate with each other through wired or wireless communication. Hyun explained the current state of the technology of the IoT and how it could be used, especially in the aviation field. In the area of airline service, various situations arise between passengers and crew. Therefore, role-playing is useful in performing education to prepare and respond to passengers' different needs appropriately. Ra introduced the conceptual background and general concepts of role-playing and presented the actual role-play's preparation process, implementation, evaluation, and feedback process. For a fighter to fly for a long time and perform a rapid air attack, air refueling is essential, which serves refueling from the air rather than from the aircraft base. Koo developed a questionnaire based on the HFACS (Human Factors Analysis and Classification System) model and used it to conduct a fighter pilot survey and analyze the results.

Pattern classification of the synchronized EEG records by an auditory stimulus for human-computer interface (인간-컴퓨터 인터페이스를 위한 청각 동기방식 뇌파신호의 패턴 분류)

  • Lee, Yong-Hee;Choi, Chun-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.12
    • /
    • pp.2349-2356
    • /
    • 2008
  • In this paper, we present the method to effectively extract and classify the EEG caused by only brain activity when a normal subject is in a state of mental activity. We measure the synchronous EEG on the auditory event when a subject who is in a normal state thinks of a specific task, and then shift the baseline and reduce the effect of biological artifacts on the measured EEG. Finally we extract only the mental task signal by averaging method, and then perform the recognition of the extracted mental task signal by computing the AR coefficients. In the experiment, the auditory stimulus is used as an event and the EEG was recorded from the three channel $C_3-A_1$, $C_4-A_2$ and $P_Z-A_1$. After averaging 16 times for each channel output, we extracted the features of specific mental tasks by modeling the output as 12th order AR coefficients. We used total 36th order coefficient as an input parameter of the neural network and measured the training data 50 times per each task. With data not used for training, the rate of task recognition is 34-92 percent on the two tasks, and 38-54 percent on the four tasks.