• Title/Summary/Keyword: memory retention

Search Result 258, Processing Time 0.029 seconds

Study on the Activation Energy of Charge Migration for 3D NAND Flash Memory Application (3차원 플래시 메모리의 전하 손실 원인 규명을 위한 Activation Energy 분석)

  • Yang, Hee Hun;Sung, Jae Young;Lee, Hwee Yeon;Jeong, Jun Kyo;Lee, Ga won
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.2
    • /
    • pp.82-86
    • /
    • 2019
  • The reliability of 3D NAND flash memory cell is affected by the charge migration which can be divided into the vertical migration and the lateral migration. To clarify the difference of two migrations, the activation energy of the charge loss is extracted and compared in a conventional square device pattern and a new test pattern where the perimeter of the gate is exaggerated but the area is same. The charge loss is larger in the suggested test pattern and the activation energy is extracted to be 0.058 eV while the activation energy is 0.28 eV in the square pattern.

Enhancement of nonvolatile memory of performance using CRESTED tunneling barrier and high-k charge trap/bloking oxide layers (Engineered tunnel barrier가 적용되고 전화포획층으로 $HfO_2$를 가진 비휘발성 메모리 소자의 특성 향상)

  • Park, Goon-Ho;You, Hee-Wook;Oh, Se-Man;Kim, Min-Soo;Jung, Jong-Wan;Lee, Young-Hie;Chung, Hong-Bay;Cho, Won-Ju
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.415-416
    • /
    • 2009
  • The tunnel barrier engineered charge trap flash (TBE-CTF) non-volatile memory using CRESTED tunneling barrier was fabricated by stacking thin $Si_3N_4$ and $SiO_2$ dielectric layers. Moreover, high-k based $HfO_2$ charge trap layer and $Al_2O_3$ blocking layer were used for further improvement of the NVM (non-volatile memory) performances. The programming/erasing speed, endurance and data retention of TBE-CTF memory was evaluated.

  • PDF

Effects of Geonne-Eum on Learning and Memory Function in Model Rat Injured by Ibotenate (건뇌음이 해마손상백서의 기억 및 학습기능 회복에 미치는 영향)

  • Rho Sang Yong;Eom Hyun Sup;Chi Gyoo Yong
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.2
    • /
    • pp.553-559
    • /
    • 2003
  • In order to make the efficient prescription and cope with various senile dementia, learning and memory functions of Sprague-Dawley model rats were tested with Morris water maze at first. And to evaluate the effects of the sample drug(GM) on choline acetyltranferase and acetylcholine esterase, immunoreactive measurement and enzymatic activity measuring were carried out. Rats were injected with ibotenic acid through hippocampus CA1 and CA3 area. The results are as following. GM improves the learning ability in tile acquisition test and memory function in the retention test significantly. And GM increases the level of ChAT which is synthesizing acetylcholine in CA3 area, and at the same time it increases the level of AChE which is resolving acetylcholine. These results show that GM improve the cholinergic catabolism and anabolism, and the increment of metabolic activity of cholinergic system contributes to the recovery of damaged learning and memory function by ibotenic acid. So it can be concluded that GM will be helpful to cholinergic brain disease induced by primary or senile reduction of acetylcholine secretive activity.

The Central Effects of Saponin Components and Polysaccarideg Fraction from Korean Bted Ginseng (고려홍삼의 사포닌 성분 및 다당체 분획의 중추효과)

  • Chepurnov, S.A.;Chepurnova, N.E.;Park, Jin-Kyu;Buzinova, E.V.;Lubimov, I.I.;Kabanova, N.P.;Nam, Ki-Yeul
    • Journal of Ginseng Research
    • /
    • v.18 no.3
    • /
    • pp.165-174
    • /
    • 1994
  • To investigate the significant indicators Improving the undisturbed memory in animal behavior, we employed several behavioral methods (learning, relearning in radial maze, and active avoidance) with ginseng components. Results showed that the repeated intranasal administration of $Rb_1$ and total saponins from Korean red ginseng induced direct effects on the brain mechanisms in rats, and improved the spatial memory during the learning, relearning and retention in the 12-arm radial maze test. The intranasal treatment of the total saponins also effectively improved the disturbed memory (amnesia) by pentylentetrazole, and simultaneously protected the brain by decreasing the severity of motor epileptic seizures. The intraperitonial administration of polysaccharide fraction of Korean red ginseng could improve avoidance behavior (amount of the total ecapes) in the active-avoidance test. In addition, local changes of the temperature and resistance of skin observed after Rb, administration were suggested to reflect some action of sympathetic nerve Key words Memory, intranasal administration, pentylenetetrazole, Korea red ginseng.

  • PDF

Fabrication of low temperature metal dot nano-floating gate memory using ELA Poly-Si thin film transistor (Poly-Si 기판을 이용한 저온 공정 metal dot nano-floating gate memory 제작)

  • Koo, Hyun-Mo;Shin, Jin-Wook;Cho, Won-Ju;Lee, Dong-Uk;Kim, Seon-Pil;Kim, Eun-Kyu
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.120-121
    • /
    • 2007
  • Nano-floating gate memory (NFGM) devices were fabricated by using the low temperature poly-Si thin films crystallized by ELA and the $In_2O_3$ nano-particles embedded in polyimide layers as charge storage. Memory effect due to the charging effects of $In_2O_3$ nano-particles in polyimide layer was observed from the TFT NFGM. The post-annealing in 3% diluted hydrogen $(H_2/N_2)$ ambient improved the retention characteristics of $In_2O_3$ nano-particles embedded poly-Si TFT NFGM by reducing the interfacial states as well as grain boundary trapping states.

  • PDF

Cell Characteristics of a Multiple Alloy Nano-Dots Memory Structure

  • Kil, Gyu-Hyun;Lee, Gae-Hun;An, Ho-Joong;Song, Yun-Heup
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.240-240
    • /
    • 2010
  • A multiple alloy metal nano-dots memory using FN tunneling was investigated in order to confirm its structural possibility for future flash memory. In this work, a multiple FePt nano-dots device with a high work function (~5.2 eV) and extremely high dot density (${\sim}\;1.2{\times}10^{13}/cm^2$) was fabricated. Its structural effect for multiple layers was evaluated and compared to one with a single layer in terms of the cell characteristics and reliability. We confirm that MOS capacitor structures with 2-4 multiple FePt nano-dot layers provide a larger threshold voltage window and better retention characteristics. Furthermore, it was also revealed that several process parameters for block oxide and inter-tunnel oxide between the nano-dot layers are very important to improve the efficiency of electron injection into multiple nano-dots. From these results, it is expected that a multiple FePt nano-dots memory using Fowler-Nordheim (FN)-tunneling could be a candidate structure for future flash memory.

  • PDF

Quasi-nonvolatile Memory Characteristics of Silicon Nanosheet Feedback Field-effect Transistors (실리콘 나노시트 피드백 전계효과 트랜지스터의 준비휘발성 메모리 특성 연구)

  • Seungho Ryu;Hyojoo Heo;Kyoungah Cho;Sangsig Kim
    • Journal of IKEEE
    • /
    • v.27 no.4
    • /
    • pp.386-390
    • /
    • 2023
  • In this study, we examined the quasi-nonvolatile memory characteristics of silicon nanosheet (SiNS) feedback field-effect transistors (FBFETs) fabricated using a complementary metal-oxide-semiconductor process. The SiNS channel layers fabricated by photoresist overexposure method had a width of approximately 180 nm and a height of 70 nm. The SiNS FBFETs operated in a positive feedback loop mechanism and exhibited an extremely low subthreshold swing of 1.1 mV/dec and a high ON/OFF current ratio of 2.4×107. Moreover, SiNS FBFETs represented long retention time of 50 seconds, indicating the quasi-nonvolatile memory characteristics.

Effects of Composition on the Memory Characteristics of (HfO2)x(Al2O3)1-x Based Charge Trap Nonvolatile Memory

  • Tang, Zhenjie;Ma, Dongwei;Jing, Zhang;Jiang, Yunhong;Wang, Guixia;Zhao, Dongqiu;Li, Rong;Yin, Jiang
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.5
    • /
    • pp.241-244
    • /
    • 2014
  • Charge trap flash memory capacitors incorporating $(HfO_2)_x(Al_2O_3)_{1-x}$ film, as the charge trapping layer, were fabricated. The effects of the charge trapping layer composition on the memory characteristics were investigated. It is found that the memory window and charge retention performance can be improved by adding Al atoms into pure $HfO_2$; further, the memory capacitor with a $(HfO_2)_{0.9}(Al_2O_3)_{0.1}$ charge trapping layer exhibits optimized memory characteristics even at high temperatures. The results should be attributed to the large band offsets and minimum trap energy levels. Therefore, the $(HfO_2)_{0.9}(Al_2O_3)_{0.1}$ charge trapping layer may be useful in future nonvolatile flash memory device application.

Comparison of retention characteristics of ferroelectric capacitors with $Pb(Zr, Ti)O_3$ films deposited by various methods for high-density non-volatile memory.

  • Sangmin Shin;Mirko Hofmann;Lee, Yong-Kyun;Koo, June-Mo;Cho, Choong-Rae;Lee, June-Key;Park, Youngsoo;Lee, Kyu-Mann;Song, Yoon-Jong
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.3 no.3
    • /
    • pp.132-138
    • /
    • 2003
  • We investigated the polarization retention characteristics of ferroelectric capacitors with $Pb(Zr,Ti)O_3$ (PZT) thin films which were fabricated by different deposition methods. In thermally-accelerated retention tests, PZT films which were prepared by a chemical solution deposition (CSD) method showed rapid decay of retained polarization charges as the thickness of the films decreased down to 100 nm, while the films which were grown by metal organic chemical vapor deposition (MOCVD) retained relatively large non-volatile charges at the corresponding thickness. We concluded that in the CSD-grown films, the thicker interfacial passive layer compared with the MOCVD-grown films had an unfavorable effect on retention behavior. We observed the existence of such interfacial layers by extrapolation of the total capacitance with thickness of the films and the capacitance of these layers was larger in MOCVD-grown films than in CSD-grown films. Due to incomplete compensation of surface polarization charges by the free charges in the metal electrodes, the interfacial field activated the space charges inside the interfacial layers and deposited them at the boundary between the ferroelectric layer and the interfacial layer. Such space charges built up an internal field inside the films, which interfered with domain wall motion, so that retention property at last became degraded. We observed less imprint which was a result of less internal field in MOCVD-grown films while large imprint was observed in CSD-grown films.

Charge trapping characteristics of the zinc oxide (ZnO) layer for metal-oxide semiconductor capacitor structure with room temperature

  • Pyo, Ju-Yeong;Jo, Won-Ju
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.310-310
    • /
    • 2016
  • 최근 NAND flash memory는 높은 집적성과 데이터의 비휘발성, 낮은 소비전력, 간단한 입, 출력 등의 장점들로 인해 핸드폰, MP3, USB 등의 휴대용 저장 장치 및 노트북 시장에서 많이 이용되어 왔다. 특히, 최근에는 smart watch, wearable device등과 같은 차세대 디스플레이 소자에 대한 관심이 증가함에 따라 유연하고 투명한 메모리 소자에 대한 연구가 다양하게 진행되고 있다. 대표적인 플래시 메모리 소자의 구조로 charge trapping type flash memory (CTF)가 있다. CTF 메모리 소자는 trap layer의 trap site를 이용하여 메모리 동작을 하는 소자이다. 하지만 작은 window의 크기, trap site의 열화로 인해 메모리 특성이 나빠지는 문제점 등이 있다. 따라서 최근, trap layer에 다양한 물질을 적용하여 CTF 소자의 문제점을 해결하고자 하는 연구들이 진행되고 있다. 특히, 산화물 반도체인 zinc oxide (ZnO)를 trap layer로 하는 CTF 메모리 소자가 최근 몇몇 보고 되었다. 산화물 반도체인 ZnO는 n-type 반도체이며, shallow와 deep trap site를 동시에 가지고 있는 독특한 물질이다. 이 특성으로 인해 메모리 소자의 programming 시에는 deep trap site에 charging이 일어나고, erasing 시에는 shallow trap site에 캐리어들이 쉽게 공급되면서 deep trap site에 갇혀있던 charge가 쉽게 de-trapped 된다는 장점을 가지고 있다. 따라서, 본 실험에서는 산화물 반도체인 ZnO를 trap layer로 하는 CTF 소자의 메모리 특성을 확인하기 위해 간단한 구조인 metal-oxide capacitor (MOSCAP)구조로 제작하여 메모리 특성을 평가하였다. 먼저, RCA cleaning 처리된 n-Si bulk 기판 위에 tunnel layer인 SiO2 5 nm를 rf sputter로 증착한 후 furnace 장비를 이용하여 forming gas annealing을 $450^{\circ}C$에서 실시하였다. 그 후 ZnO를 20 nm, SiO2를 30 nm rf sputter로 증착한 후, 상부전극을 E-beam evaporator 장비를 사용하여 Al 150 nm를 증착하였다. 제작된 소자의 신뢰성 및 내구성 평가를 위해 상온에서 retention과 endurance 측정을 진행하였다. 상온에서의 endurance 측정결과 1000 cycles에서 약 19.08%의 charge loss를 보였으며, Retention 측정결과, 10년 후 약 33.57%의 charge loss를 보여 좋은 메모리 특성을 가지는 것을 확인하였다. 본 실험 결과를 바탕으로, 차세대 메모리 시장에서 trap layer 물질로 산화물 반도체를 사용하는 CTF의 연구 및 계발, 활용가치가 높을 것으로 기대된다.

  • PDF