• Title/Summary/Keyword: membrane-fusion protein

Search Result 126, Processing Time 0.029 seconds

A Role of YlBud8 in the Regulation of Cell Separation in the Yeast Yarrowia lipolytica

  • Li, Yun-Qing;Xue, Qing-Jie;Yang, Yuan-Yuan;Wang, Hui;Li, Xiu-Zhen
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.1
    • /
    • pp.141-150
    • /
    • 2019
  • The spatial landmark protein Bud8 plays a crucial role in bipolar budding in the budding yeast Saccharomyces cerevisiae. The unconventional yeast Yarrowia lipolytica can also bud in a bipolar pattern, but is evolutionarily distant from S. cerevisiae. It encodes the protein YALI0F12738p, which shares the highest amino acid sequence homology with S. cerevisiae Bud8, sharing a conserved transmembrane domain at the C-terminus. Therefore, we named it YlBud8. Deletion of YlBud8 in Y. lipolytica causes cellular separation defects, resulting in budded cells remaining linked with one another as cell chains or multiple buds from a single cell, which suggests that YlBud8 may play an important role in cell separation, which is distinct from the function of Bud8 in S. cerevisiae. We also show that the YlBud8-GFP fusion protein is located at the cell membrane and enriched in the bud cortex, which would be consistent with a role in the regulation of cell separation. The coiled-coil domain at the N-terminus of YlBud8 is important to the correct localization and function of YlBud8, as truncated proteins that do not contain the coiled-coil domain cannot rescue the defects observed in $Ylbud8{\Delta}$. This finding suggests that a new signaling pathway controlled by YlBud8 via regulation of cell separation may exist in Y. lipolytica.

Expression of Recombinant Intimin of Escherichia coli 0157:H7 and its Effect of Immune Response (장출혈성대장균 O157:H7 유래 재조한 Intimin의 발현과 그의 면역반응 효과)

  • Kim, D.G.;Lee, S.R.;Kim, J.W.
    • Journal of Animal Science and Technology
    • /
    • v.46 no.3
    • /
    • pp.495-502
    • /
    • 2004
  • Intimin, the product of eae gene in EHEC O157:H7, is required for intimate adherence. In this study, the C-terminaI region(281 amino acids) of the EHEC OI57:H7 intimin were expressed as a protein fusion with (His)$_6$ which was used to raise antiserum in rabbits. The antiserum reacted in western blot with a 94kDa outer membrane protein of EHEC O157:H7. It was observed that the antibody titers both in egg yolk and serum appeared in 2${\sim}$4 weeks after immunization with fusion protein. At the time of 8 weeks, the titre of egg yolk was found to be higher than that of sera. According to the results of neutralization test, chicken egg-yolk antibody(lgY) against the recombinant intimin strongly reacted to EHEC O157:H7. We conclude that a truncated recombinant intimin could be used as an immunogen to elicit antibody(lgY) against O157:H7.

Expression of Human Serine Palmitoyltransferase Genes for Antibody Development (Antibody 제작을 위한 human serine palmitoyltransferase 유전자의 발현)

  • 김희숙
    • Journal of Life Science
    • /
    • v.14 no.2
    • /
    • pp.315-319
    • /
    • 2004
  • For antibody development of human serine palmitoyltransferase (SPT, EC 2.3.1.50), SPTLC1 and SPTLC2 genes were subcloned in pRset vector and expressed in E. coli BL21 (DE3)pLys cells. Eucaryotic SPT is a membrane-bound heterodimer enzyme, while all other members are soluble homodimer enzymes. cDNA library were obtained from total RNA from human embryo kidney cell line, HEK293, using RT-PCR and PCR with specific primers was carried out for preparing SPTLC1 and SPTLC2 genes. pRset vector which can express hexahistidine-tag fusion protein was used and the DNA sequences of pRsetB/SPTLC1 and pRsetA/SPTLC2 were confirmed. Recombinant BL21 cells with SPTLC subunits were selected with LB plate containing ampicillin and chroramphenicol. SPTLC1 and SPTLC2 proteins were induced with 1 mM IPTG and seperated on 10% SDS-PAGE gel. Expressed proteins were confirmed by western blotting with His-tag antibody.

Immunoradiometric Assay using Monoclonal Antibody Against Human Serum Transferrin Receptor for Diagnosis of Iron Deficiency (사람 혈청 트란스페린수용체의 단클론 항체를 이용한 방사면역측정과 철영양상태의 진단)

  • 김승렬
    • Journal of Nutrition and Health
    • /
    • v.29 no.9
    • /
    • pp.971-980
    • /
    • 1996
  • The soluble transferrin receptor(TfR) in human serum has been shown recently to be a truncated form of intact membrane bound receptor containing most of the extracellular domain. We purfied the transferin-free TfR from human serum by immounoaffinity chromatography which produced the single protein identity in high resolution gel chormatography. The monoclonal antibodies(MAb) against purifed serum TfR were produced by fusion of spleen cells o fimmunized Balb/c mice and SP2 cells. Ten hybrids producing MAb specific for serum TfR were identifed and determine their iostypes. A immunoraddiometric assay (IRMA) for serum TfR was established using two monoclonal IgG1 antibodies as the coating and indicator antibodies on the bosis of their suitability in sandwich IRMA of serum TfR. The mean serum TfR levels in the 15 normal male, 15 normal female, and 19 iron-deficient subjects were 5.4$\pm$0.98, 4.6$\pm$0/76, and 18.0$\pm$12.8mg/1, respectively, and the difference in mean values between normal and iron deficient subjects was significant(p=0.0005). There existed the inverse logarithmic relationship(r=-0.9336, p<0.0001) between the serum TfR and ferritin levels.

  • PDF

Functions of the Plant Qbc SNARE SNAP25 in Cytokinesis and Biotic and Abiotic Stress Responses

  • Won, Kang-Hee;Kim, Hyeran
    • Molecules and Cells
    • /
    • v.43 no.4
    • /
    • pp.313-322
    • /
    • 2020
  • Eukaryotes transport biomolecules between intracellular organelles and between cells and the environment via vesicle trafficking. Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNARE proteins) play pivotal roles in vesicle and membrane trafficking. These proteins are categorized as Qa, Qb, Qc, and R SNAREs and form a complex that induces vesicle fusion for targeting of vesicle cargos. As the core components of the SNARE complex, the SNAP25 Qbc SNAREs perform various functions related to cellular homeostasis. The Arabidopsis thaliana SNAP25 homolog AtSNAP33 interacts with Qa and R SNAREs and plays a key role in cytokinesis and in triggering innate immune responses. However, other Arabidopsis SNAP25 homologs, such as AtSNAP29 and AtSNAP30, are not well studied; this includes their localization, interactions, structures, and functions. Here, we discuss three biological functions of plant SNAP25 orthologs in the context of AtSNAP33 and highlight recent findings on SNAP25 orthologs in various plants. We propose future directions for determining the roles of the less well-characterized AtSNAP29 and AtSNAP30 proteins.

Regulation of SoxR, the superoxide-sensory regulator in Escherichia coli.

  • Lee Joon-Hee;Koo Mi-Sun;Yeo Won-Sik;Roe Jung-Hye
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.24-31
    • /
    • 2000
  • In order to find out SoxR-reducing system in E. coli, we generated Tn10-insertion mutants and screened for constitutive expression of SoxS in a soxS-lacZ fusion strain. One mutation was mapped in rseB, a gene in rseABC (Regulation of SigmaE) operon. The constitutive soxS-expressing phenotype was due to the polar effect on the downstream gene, rseC. RseC is likely to function as a component of SoxR reduction system because SoxR was kept in oxidized form to activate soxS expression in rseC mutant. RseC is an integral membrane protein with an N-terminal cysteine-rich domain in the cytoplasm. The functionally critical cysteines were determined by substitution mutagenesis. The truncated N-terminal domain of RseC reduced the soxS transcription by $50\%$ as judged by in vitro transcription assay. Currently RseC is believed to be a reducing factor for SoxR. However, the mechanism for the reduction needs further investigation.

  • PDF

Preparation of ${\delt}-Opioid$ Receptor-Sepcific Antibodies Using Molecular Cloned Genes

  • Kim, Ae-Young;Lee, Shee-Yong;Kim, Kyeon-Min
    • Archives of Pharmacal Research
    • /
    • v.18 no.2
    • /
    • pp.113-117
    • /
    • 1995
  • We re-cloned mouse ${\delt}-Opioid$receptor from NG108-15 cells using RT-PCR, and confirmed it by restriction analysis and by sequencing the beginning and end part of the amplified DNA. When transiently expressed in COS-7 cells, cloned ${\delt}-Opioid$ receptor showed saturable and specific binding to $[^3H]$naloxone with very similar binding parameters to originally reported ones. To make antibodies specific for the ${\delt}-Opioid$ receptor, the carboxy tail of the receptor, which is unique to the ${\delt}-Opioid$ receptor compared with other opioid receptors, was expressed in bacteria as a ufsion proteinwith glutathione S-transferase. Purified fusion protein selective for ${\delt}-Opioid$ receptor when tested by western blotting using membrane proteins prepared from transfected COS-7 cells. Cloned ${\delt}-Opioid$ receptor andl antibodies specific for ${\delt}-Opioid$ receptor are going to be valuable tools for studying pharmacological actions of the ${\delt}-Opioid$ receptor and morphine dependence.

  • PDF

Vesicular Stomatitis Virus G Glycoprotein and ATRA Enhanced Bystander Killing of Chemoresistant Leukemic Cells by Herpes Simplex Virus Thymidine Kinase/Ganciclovir

  • Hu, Chenxi;Chen, Zheng;Zhao, Wenjun;Wei, Lirong;Zheng, Yanwen;He, Chao;Zeng, Yan;Yin, Bin
    • Biomolecules & Therapeutics
    • /
    • v.22 no.2
    • /
    • pp.114-121
    • /
    • 2014
  • Refractoriness of acute myeloid leukemia (AML) cells to chemotherapeutics represents a major clinical barrier. Suicide gene therapy for cancer has been attractive but with limited clinical efficacy. In this study, we investigated the potential application of herpes simplex virus thymidine kinase/ganciclovir (HSV-TK/GCV) based system to inhibit chemoresistant AML cells. We first generated Ara-C resistant K562 cells and doxorubicin-resistant THP-1 cells. We found that the HSV-TK/GCV anticancer system suppressed drug resistant leukemic cells in culture. Chemoresistant AML cell lines displayed similar sensitivity to HSV-TK/GCV. Moreover, HSV-TK/GCV killing of leukemic cells was augmented to a mild but significant extent by all-trans retinoic acid (ATRA) with concomitant upregulation of Connexin 43, a major component of gap junctions. Interestingly, HSV-TK/GCV killing was enhanced by expression of vesicular stomatitis virus G glycoprotein (VSV-G), a fusogenic membrane protein, which also increased leukemic cell fusion. Co-culture resistant cells expressing HSV-TK and cells stably transduced with VSV-G showed that expression of VSV-G could promote the bystander killing effect of HSV-TK/GCV. Furthermore, combination of HSV-TK/GCV with VSV-G plus ATRA produced more pronounced antileukemia effect. These results suggest that the HSV-TK/GCV system in combination with fusogenic membrane proteins and/or ATRA could provide a strategy to mitigate the chemoresistance of AML.

Induction of Immune Responses by Two Recombinant Proteins of Brucella abortus, Outer Membrane Proteins 2b Porin and Cu/Zn Superoxide Dismutase, in Mouse Model

  • Sung, Kyung Yong;Jung, Myunghwan;Shin, Min-Kyoung;Park, Hyun-Eui;Lee, Jin Ju;Kim, Suk;Yoo, Han Sang
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.6
    • /
    • pp.854-861
    • /
    • 2014
  • The diagnosis of Brucella abortus is mainly based on serological methods using antibody against LPS, which has diagnostic problems. Therefore, to solve this problem, we evaluated two proteins of B. abortus, Cu/Zn superoxide dismutase (SodC) and outer membrane proteins 2b porin (Omp2b). The genes were cloned and expressed in a pMAL system, and the recombinant proteins, rOmp2b and rSodC, were purified as fusion forms with maltose-binding protein. The identity of the proteins was confirmed by SDS-PAGE and Western blot analysis with sera of mice infected with B. abortus. Production of cytokines and nitric oxide (NO) was investigated in RAW 264.7 cells and mouse splenocytes after stimulation with the proteins. Moreover, cellular and humoral immune responses were investigated in BALB/c mice after immunization with the proteins. TNF-${\alpha}$, IL-6, and NO were significantly inducible in RAW 264.7 cells. Splenocytes of naive mice produced IFN-${\gamma}$ and IL-4 significantly by stimulation. Moreover, number of IgG, IFN-${\gamma}$, and IL-4 producing cells were increased in immunized mice with the two proteins. Production of IgG and IgM with rOmp2b was higher than those with rSodC in immunized mice. These results suggest that the two recombinant proteins of B. abortus may be potential LPS-free proteins for diagnosis.

Construction of Glomerular Epithelial Cells Expressing Both Immune Tolerance and GFP Genes and Application to Cell Therapy by Cell Transplantation

  • Ohga, Masahiro;Ogura, Mariko;Matsumura, Mastoshi;Wang, Pi-Chao
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.7 no.5
    • /
    • pp.303-310
    • /
    • 2002
  • Cell therapy applied to wound healing or tissue regeneration presents a revolutionary realm to which principles of gene engineering and delivery may be applied. One promising application is the transplantation of cells into the wounded tissue to help the tissue repair. However, when cells are transplanted from in vitro to in vivo, immune rejection occurs due to the immune response triggered by the activation of T-cell, and the transplanted cells are destroyed by the attack of activated T-cell and lose their function. Immune suppressant such as FK506 is commonly used to suppress immune rejection during transplantation. However, such kind of immune suppressants not only suppresses immune rejection in the periphery of transplanted cells but also suppresses whole immune response system against pathogenic infection. In order to solve this problem, we developed a method to protect the desired cells from immune rejection without impairing whole immune system during cell transplantation. Previously, we reported the success of constructing glomerular epithelial cells for removal of immune complex, in which complement receptor of type 1 (CR1) was over-expressed on the membrane of renal glomerular epithelial cells and could bind immune complex of DNA/anti-DNA-antibody to remove immune complex through phagocy-tosis [1]. Attempting to apply the CR1-expressing cells to cell therapy and evade immune rejection during cell transplantation, we constructed three plasmids containing genes encoding a soluble fusion protein of cytolytic T lymphocyte associated antigen-4 (CTLA4Ig) and an enhanced green fluorescent protein (EGFP). The plasmids were transfected to the above-mentioned glomerular epithelial cells to express both genes simultaneously. Using the clone cells for cell transplantation showed that mice with autoimmune disease prolonged their life significantly as compared with the control mice, and two injections of the cells at the beginning of two weeks resulted in remarkable survivability, whereas it requires half a year and 50 administrations of proteins purified from the same amount of cells to achieve the same effect.