• Title/Summary/Keyword: membrane-coating

Search Result 362, Processing Time 0.028 seconds

Behavior and Resistance to the Reflection Crack of Composite Pavement with Waterproof Membrane (접착식 방수층을 적용한 합성단면포장의 반사균열 저항특성 분석 연구)

  • Suh, Young-Chan;Lee, Yong-Mun;Kim, Jun-Hyung;Cho, Nam-Hyun
    • International Journal of Highway Engineering
    • /
    • v.14 no.2
    • /
    • pp.1-10
    • /
    • 2012
  • As old concrete pavements of over 20years in age are increasing in expressways, the repair and rehabilitation of concrete pavement have become an important issue. Although asphalt overlay is widely used as an alternative to rehabilitate the old concrete pavement, problems due to infiltrated water such as reflection crack and pothole are imposing a very serious threat to its performance. This study proposes waterproof membrane as a solution to minimize the damage due to reflection crack and infiltrated water, and accelerated pavement testing was carried out for the performance comparison of composite pavement with waterproof membrane and ordinary tack coating. The experiment used water spraying to simulate rainfall, and the behavior and moisture resistance characteristics of overlay pavement were analyzed. The experimental result indicated that the strain pattern of waterproof membrane section differed from ordinary tack coating section because waterproof membrane caused the asphalt pavement and concrete pavement to move together. Additionally, since waterproof membrane minimized the infiltration of water and delayed the occurrence of reflection crack by about 70% in comparison to ordinary tack coating method. Moreover, the damage due to infiltrated water also decreased.

Study of surface modification and contact angle by electrospun PVdF-HFP membrane with DLC coating (DLC 코팅에 의한 PVdF-HFP 막의 표면변화 및 접촉각 연구)

  • Lee, Tae Dong;Cho, Hyun;Yoon, Su Jong;Kim, Tae Gyu
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.24 no.1
    • /
    • pp.33-40
    • /
    • 2014
  • Poly vinylidene fluoride-co-hexafluoropropylene (PVdF-HFP) membrane were prepared by the electrospinning technique. We had applied a DLC coating process and then the surface of the membrane and the contact angle change was investigated. Electrospun fibrous PVdF-HFP membrane surface became to wrinkled shape by Ar plasma treatment and treatment conditions. The wrinkled surface of PVdF-HFP membrane became super-hydrophilic. However, after DLC coating process, it became super-hydrophobic. The resulting surfaces were characterized by water contact angle measurement, X-ray photoelectron spectroscopy (XPS) and field emission scanning electron microscopy (FE-SEM). Resultantly it was recognized that the wettability characteristics of the membrane surfaces depended on the chemical composition and surface morphology.

Effect of Support Resistance & Coating Thickness on Ethylene/Nitrogen Separation of PDMS Composite Membranes (지지체 투과저항과 코팅층의 두께가 PDMS 복합막의 에틸렌/질소의 투과성능에 미치는 영향)

  • 김정훈;최승학;박인준;이수복;강득주
    • Membrane Journal
    • /
    • v.14 no.1
    • /
    • pp.57-65
    • /
    • 2004
  • The effect of porous support layer resistance and PDMS (polydimethylsiloxane) coating thickness on ethylene/nitrogen separation of composite membranes was studied with the model of Pinnau and Wijmans〔1〕. To control the support resistance (or permeance), PES porous membranes were prepared by phase inversion process with various PES/NMP dope concentrations. The thickness of selective PDMS top layer was controlled by using a spin coater. Its cross-section and coating thickness were observed by scanning electron microscope (SEM). Pure gas permeation test was done with ethylene and nitrogen, respectively. The experimental result for olefin/nitrogen separation process matched well with theoretical result from the model used. The result shows that optimization between PDMS coating thickness and support resistance is important to get PDMS composite membranes with best performance.

Advanced Water Treatment of High Turbidity Source by Hybrid Process of Ceramic Ultrafiltration and Photocatalyst: 1. Effects of Photocatalyst and Water-back-flushing Condition (세라믹 한외여과 및 광촉매 혼성공정에 의한 고탁도 원수의 고도정수처리: 1. 광촉매 및 물역세척 조건의 영향)

  • Cong, Gao-Si;Park, Jin-Yong
    • Membrane Journal
    • /
    • v.21 no.2
    • /
    • pp.127-140
    • /
    • 2011
  • The effects of $TiO_2$ photocatalyst coating bead concentration, water-back-flushing period (FT), and back-flushing time (BT) were investigated in hybrid process of ceramic ultrafiltration and photocatalyst for advanced drinking water treatment in this study. Photocatalyst coating bead concentration was changed in the range of 10~40 g/L, FT in 2~10 min and BT in 6~30 sec. Then, we observed the effects on resistance of membrane fouling $(R_f)$, permeate flux (J) and total permeate volume $(V_{\Upsilon})$ during total filtration time of 180 min. As decreasing photocatalyst coating bead concentration, $R_f$ increased and J decreased. $V_{\Upsilon}$ was the highest value of 8.85 L at 40 g/L of photocatalyst coating bead concentration. At FT change experiment, $R_f$ decreased and J increased as decreasing FT. Then $R_f$ decreased and J increased according to increasing BT at BT change experiment. Because at NBF (no back-flushing) dramatic membrane fouling reduced membrane pore size, turbid and dissolved organic matters ($UV_{254}$ absorbance) could be removed efficiently. Therefore, treatment efficiencies of turbidity and dissolved organic matters were the highest at NBF. Then by cleaning effect of photocatalyst coating bead, the treatment efficiencies of turbidity and dissolved organic matters increased as decreasing FT and increasing BT.

Glucose Diffusion Limiting Membrane Based on Polyethyleneimine (PEI) Hydrogel for the Stabilization of Glucose Sensor

  • Kim, Suk-Joon;Shin, Woonsup
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.2
    • /
    • pp.225-229
    • /
    • 2021
  • Commercially available continuous glucose sensors require the operation stability for more than two weeks. Typically, the sensor comprises a sensing layer and an over-coating layer for the stable operation inside the body. In the sensing layer, enzymes and mediators are cross-linked together for the effective sensing of the glucose. The over-coating layer limits the flux of glucose and works as a biocompatible layer to the body fluids. Here, we report the simple preparation of the flux-limiting layer by the condensation of polyethyleneimine (PEI), tri-epoxide linker, and trimethylolpropane triglycidyl ether (PTGE). The sensor is constructed by a layer-by-layer drop-coating of the sensing layer containing glucose dehydrogenase and the PEI-derived blocking layer. It is stable for more than 14 days, which is enough for the sensor in the continuous monitor glucose monitoring (CGM) system.

Comparative Study on the Organic Solvent of IrO2-Ionomer Inks used for Spray Coating of Anode for Proton Exchange Membrane Water Electrolysis

  • Hye Young Jung;Yongseok Jun;Kwan-Young Lee;Hyun S. Park;Sung Ki Cho;Jong Hyun Jang
    • Journal of Electrochemical Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.283-292
    • /
    • 2023
  • Currently, spray coating has attracted interest in the mass production of anode catalyst layers for proton exchange membrane water electrolysis (PEMWE). The solvent in the spray ink is a critical factor for the catalyst dispersion in ink, the microstructure of the catalyst layer, and the PEMWE performance. Herein, various pure organic solvents were examined as a substitute for conventional isopropanol-deionized water (IPA-DIW) mixture for ink solvent. Among the polar solvents that exhibited better IrO2 dispersion over nonpolar solvents, 2-butanol (2-BuOH) was selected as a suitable candidate. The PEMWE single cells were fabricated using 2-BuOH at various ionomer contents, spray nozzle types, and drying temperatures, and their performance was compared to the cells fabricated using a conventional IPA-DIW mixture. The PEMWE single cells with 2-BuOH solvent showed good performances comparable to the conventional IPA-DIW mixture case and highly durable performances under accelerated degradation tests.

Preparation and Tactile Performance of Soluble Eggshell Membrane (S-ESM) Embedded Waterborne Polyurethane (WPU) Composite

  • Soohyun Joo;Tridib Kumar Sinha;Junho Moon;Jeong Seok Oh
    • Elastomers and Composites
    • /
    • v.58 no.3
    • /
    • pp.112-120
    • /
    • 2023
  • Herein, we propose a facile water-processible method to develop an eggshell membrane (ESM)-embedded waterborne polyurethane (WPU)-based bio-degradable and bio-compatible coating material that exhibits attractive tactile properties. Virgin ESM is not dispersible in water. Hence, to develop the ESM-based WPU composite, soluble ESM (S-ESM) was first extracted by de-crosslinking the ESM. The extracted S-ESM at different concentrations (0, 0.5, 1.0, 1.5 wt %) was mixed with WPU. Compared to virgin WPU, the viscosity of S-ESM/WPU dispersion and the in-plane coefficient of friction (COF) of the composite film surfaces decreased with an increase in the S-ESM content. In addition, an increase in the S-ESM content improved the tribo-positive characteristics of the film. Different good touch-feeling biomaterials, such as fur, feather, and human skin exhibit tribo-positivity. Thus, the enhanced tribo-positive characteristics of the S-ESM/WPU and the decrease in their COF owing to an increase in the S-ESM content imply the enhancement of its touch-feeling performance. The S-ESM embedded WPU composites have potential applications as coating materials in various fields, including automobile interiors and artificial leather.

Surface reactive micro/nano particles on inorganic oxygen separation membrane

  • Lee, Kee-Sung;Shin, Tae-Ho;Lee, Shiwoo;Woo, Sang-Kuk;Yang, Jae-Kyo;Choa, Yong-Ho
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2004.05a
    • /
    • pp.94-97
    • /
    • 2004
  • Micro/nano-sized L $a_{0.6}$S $r_{0.4}$Co $O_{3-}$$\delta$/ particles are considered to improve oxygen permeability in highly selective inorganic oxygen separation membrane. A L $a_{0.7}$S $r_{0.3}$G $a_{0.6}$F $e_{0.4}$ $O_{3-}$$\delta$/ membrane with perovskite structure is fabricated by a conventional solid-state reaction. As the oxygen permeation flux of the L $a_{0.7}$S $r_{0.3}$G $a_{0.6}$F $e_{0.4}$ $O_{3-}$$\delta$/ membrane was lower than commercial gas separation membranes, we coated the L $a_{0.6}$S $r_{0.4}$Co $O_{3-}$$\delta$/ particles to enhance the oxygen permeation flux. It has been demonstrated that the effective area of reactive free surface is an important factor in determining the effectiveness of the introduction of coating layer for oxygen permeation. The introduction of micro/nano L $a_{0.6}$S $r_{0.4}$Co $O_{3-}$$\delta$/ particles was very effective for increasing oxygen flux, as the flux was as much as 2 to 6 times higher than that of an uncoated L $a_{0.7}$S $r_{0.3}$G $a_{0.6}$F $e_{0.4}$ $O_{3-}$$\delta$/ membrane.\delta$/ membrane.>/ membrane.brane.

  • PDF

Preparation of Composite Membranes for Recovery of Unreacted Olefin Monomers (미반응 올레핀계 모노머 회수를 위한 복합막의 제조)

  • Kim, Hyun-Gi;Kim, Sang-Yong;Kim, Sung-Soo
    • Membrane Journal
    • /
    • v.20 no.4
    • /
    • pp.297-303
    • /
    • 2010
  • Composite membranes were prepared for membrane/cold condensation process for recovery of unreacted olefin monomer from the polyolefin polymerization process by solution coating and plasma polymerization processes. Poly(dimethylsiloxane) (PDMS) solution was coated on polysulfone (PSF) support and increase of prepolymer content in solution made more dense membrane structure to result in the increase of separation factor while absolute flux decreased. Permeation of organic materials through the composite membranes follows the sorption and diffusion mechanism, which brought about the results that separation factor increased with critical temperature of the organic materials, and that flux increased with the increase of the molar volume. Crosslinking period affected the permeation characteristics. Other types of composite membranes were fabricated by plasma polymerization of siloxane materials on polypropylene (PP) and PSF supports. PP was tested as a support for composite membranes, which had not been used so far in solution coating process, and plasma polymerization made the composite membranes equivalent performances to those of membranes prepared by solution coating process.