• 제목/요약/키워드: membrane resistance

검색결과 859건 처리시간 0.111초

Stability Tests on Anion Exchange Membrane Water Electrolyzer under On-Off Cycling with Continuous Solution Feeding

  • Niaz, Atif Khan;Lim, Hyung-Tae
    • Journal of Electrochemical Science and Technology
    • /
    • 제13권3호
    • /
    • pp.369-376
    • /
    • 2022
  • In this study, the stability of an anion exchange membrane water electrolyzer (AEMWE) cell was evaluated in an on-off cycling operation with respect to an applied electric bias, i.e., a current density of 500 mA cm-2, and an open circuit. The ohmic and polarization resistances of the system were monitored during operation (~800 h) using electrochemical impedance spectra. Specific consideration was given to the ohmic resistance of the cell, especially that of the membrane under on-off cycling conditions, by consistently feeding the cell with KOH solution. Owing to an excess feed solution, a momentary increase in the polarization resistance was observed immediately after the open-circuit. The excess feed solution was mostly recovered by subjecting the cell to the applied electric bias. Stability tests on the AEMWE cell under on-off cycling with continuous feeding even under an open circuit can guarantee long-term stability by avoiding an irreversible increase in ohmic and polarization resistances.

막결합형 생물반응기(Membrane Bio-Reactor)의 막 오염 저감을 위한 고전압 펄스의 적용과 막 오염 저감 속도론적 해석 (Application of high voltage pulse for reduction of membrane fouling in membrane bio-reactor and kinetic approach to fouling rate reduction)

  • 김경래;김완규;장인성
    • 상하수도학회지
    • /
    • 제34권3호
    • /
    • pp.183-190
    • /
    • 2020
  • Although membrane bio-reactor (MBR) has been widely applied for wastewater treatment plants, the membrane fouling problems are still considered as an obstacle to overcome. Thus, many studies and commercial developments on mitigating membrane fouling in MBR have been carried out. Recently, high voltage impulse (HVI) has gained attention for a possible alternative technique for desalting, non-thermal sterilization, bromate-free disinfection and mitigation of membrane fouling. In this study, it was verified if the HVI could be used for mitigation of membrane fouling, particularly the internal pore fouling in MBR. The HVI was applied to the fouled membrane under different conditions of electric fields (E) and contact time (t) of HVI in order to investigate how much of internal pore fouling was reduced. The internal pore fouling resistance (Rf) after HVI induction was reduced as both E and t increased. For example, Rf decreased by 19% when the applied E was 5 kV/cm and t was 80 min. However, the Rf decreased by 71% as the E increased to 15 kV/cm under the same contact time. The correlation between E and t that needed for 20% of Rf reduction was modeled based on kinetics. The model equation, E1.54t = 1.2 × 103 was obtained by the membrane filtration data that were obtained with and without HVI induction. The equation states the products of En and t is always constant, which means that the required contact time can be reduced in accordance with the increase of E.

Fouling analysis and biomass distribution on a membrane bioreactor under low ratio COD/N

  • Gasmi, Aicha;Heran, Marc;Hannachi, Ahmed;Grasmick, Alain
    • Membrane and Water Treatment
    • /
    • 제6권4호
    • /
    • pp.263-276
    • /
    • 2015
  • This paper deals with the influence of chemical oxygen demand to nitrogen ratio ((COD/N) ratio) on the performance of an membrane bioreactor. We aim at establishing relations between COD/N ratio, organisms' distribution and sludge properties (specific resistance to filtration (SRF) and membrane fouling). It is also essential to define new criteria to characterize the autotrophic microorganisms, as the measurements of apparent removal rates of ammonium seem irrelevant to characterize their specific activity. Two experiments (A and B) have been carried on a 30 L lab scale membrane bioreactor with low COD/N ratio (2.3 and 1.5). The obtained results clearly indicate the role of the COD/N ratio on the biomass distribution and performance of the membrane bioreactor. New specific criteria for characterising the autotrophic microorganisms activity, is also defined as the ratio of maximum ammonium rate to the specific oxygen uptake rate in the endogenous state for autotrophic bacteria which seem to be constant whatever the operating conditions are. They are about 24.5 to 23.8 $gN-NH_4{^+}/gO_2$, for run A and B, respectively. Moreover, the filterability of the biological suspension appear significantly lower, specific resistance to filtration and membrane fouling rate are less than $10^{14}m^{-2}$ and $0.07\;10^{12}m^{-1}.d^{-1}$ respectively, than in conventional MBR confirming the adv < antage of the membrane bioreactor functioning under low COD/N ratio.

Purification of Fermentation Products by Inorganic Membranes

  • Hasegawa, Hiroshi
    • 한국막학회:학술대회논문집
    • /
    • 한국막학회 1995년도 추계 총회 및 학술발표회
    • /
    • pp.102-105
    • /
    • 1995
  • The membrane separation process is being utilized to save energy in various fields such as the food, biotechnology, chemical, enviromental fields. Especially the use of ceramic membrane among various inorganic membranes is expected to expand to their excellent thermal, chemical and mechanical resistance. In this presentation, we would like to explain our ceramic membrane CEFILT MF for microfiltration and CEFILT UF for ultra-filtration, and the purification of fermentation products as the application example using CEFILT MF.

  • PDF

CrN 코팅구조에 따른 Polymer Electrode Membrane Fuel Cell 금속분리판의 부식특성 비교 (Comparison of Corrosion Behavior of CrN Coated SUS316L with Different Layer Structure for Polymer Electrode Membrane Fuel Cell Bipolar Plate)

  • 백정호;한원규;강성군
    • 한국재료학회지
    • /
    • 제20권4호
    • /
    • pp.187-193
    • /
    • 2010
  • Chromium nitride (CrN) samples with two different layer structures (multilayer and single layer) were coated on bipolar plates of polymer electrolyte membrane fuel cells (PEMFC) using the reactive sputtering method. The effects with respect to layer structure on corrosion resistance and overall cell performance were investigated. A continuous and thin chromium nitride layer ($Cr_{0.48}\;N_{0.52}$) was formed on the surface of the SUS 316L when the nitrogen flow rate was 10 sccm. The electrochemical stability of the coated layers was examined using the potentiodynamic and potentiostatic methods in the simulated corrosive circumstances of the PEMFC under $80^{\circ}C$. Interfacial contact resistance (ICR) between the CrN coated sample and the gas diffusion layer was measured by using Wang's method. A single cell performance test was also conducted. The test results showed that CrN coated SUS316L with multilayer structure had excellent corrosion resistance compared to single layer structures and single cell performance results with $25\;cm^2$ in effective area also showed the same tendency. The difference of the electrochemical properties between the single and multilayer samples was attributed to the Cr interlayer layer, which improved the corrosion resistance. Because the coating layer was damaged by pinholes, the Cr layer prevented the penetration of corrosive media into the substrate. Therefore, the CrN with a multilayer structure is an effective coating method to increase the corrosion resistance and to decrease the ICR for metallic bipolar plates in PEMFC.

지지체 투과저항과 코팅층의 두께가 PDMS 복합막의 에틸렌/질소의 투과성능에 미치는 영향 (Effect of Support Resistance & Coating Thickness on Ethylene/Nitrogen Separation of PDMS Composite Membranes)

  • 김정훈;최승학;박인준;이수복;강득주
    • 멤브레인
    • /
    • 제14권1호
    • /
    • pp.57-65
    • /
    • 2004
  • PDMS (polydimethylsiloxane) 복합막을 통한 기체분리 공정에서 다공성 지지체의 투과저항과 PDMS 코팅두께가 에틸렌/질소의 분리성능(투과도, 선택도)에 미치는 영향에 관하여 조사하였다. 이를 위해 Pinnau 등이 제시한 복합막 투과저항 모델이론식〔1〕이 사용되었다. 지지체의 투과도 또는 투과저항은 PES (polyethersulfone)/NMP(N-methyl-2-pyrrolidone) 고분자 용액의 농도를 변화시키면서 조절하였다. 복합막은 PES 지지체 위에 n-hexane에 녹인 2액형 PDMS 용액을 spin coater를 사용해 코팅하여 제조하였다. 선택층의 코팅 두께는 spin coater의 회전속도를 통해 조절하였다. 투과기체 분리특성은 단일기체 투과도 측정 장치를 통해 조사하였으며, 지지체 및 복합막의 단면구조 및 코팅두께는 SEM (scanning electron microscope)을 통하여 확인하였다 얻어진 실험결과는 복합막의 투과저항모델의 이론식과 매우 잘 일치함을 확인 할 수 있었다. 에틸렌/질소의 분리에 있어 PDMS 막 고유의 선택도를 얻기 위해서는 지지체의 투과저항과 코팅층의 최적화가 중요함을 확인하였다.

침지시간에 따른 Chlorinated Polyvinyl Chloride 정밀여과용 평막의 내화학적 특성 (Chemical Resistance Characteristics of the Chlorinated Polyvinyl Chloride Microfiltration Flat-sheet Membrane with respect to Immersion Time)

  • 유재상;손재익;김희준;정건용
    • 멤브레인
    • /
    • 제19권4호
    • /
    • pp.324-332
    • /
    • 2009
  • 본 연구는 정밀여과용 Chlorinated Polyvinyl Chloride (CPVC) 평막의 화학약품 수용액 내에서 경과시간에 따른 내화학성을 측정하기 위하여 실시하였다. 화학약품으로는 막 세정에 주로 사용되는 유효염소 0.5 wt% NaClO 수용액과 산성인 HCl 1 wt%, pH 4 수용액 그리고 알카리인 NaOH 4 wt%, pH 10 수용액을 사용하였다. 이상의 수용액중에 CPVC 분리막을 1일, 3, 5, 10일 동안 5, 25, $50^{\circ}C$에서 침지시킨 후, 각각의 인장강도와 파단시 신장율을 측정하여 내구성을 평가하였다. 막 세정시 주로 사용되는 유효염소 0.5 wt% NaClO 수용액의 경우 $5^{\circ}C$ 조건에서는 인장강도 변화는 5% 이내이지만 25, $50^{\circ}C$에서는 17%까지 감소하였다. CPVC 분리막의 내화학성은 산성인 HCl 1 wt%와 pH 4 수용액에서 우수하였으나 NaOH 4 wt% 수용액에 대해서 가장 취약한 것으로 나타났다.

A computer simulation of ion exchange membrane electrodialysis for concentration of seawater

  • Tanaka, Yoshinobu
    • Membrane and Water Treatment
    • /
    • 제1권1호
    • /
    • pp.13-37
    • /
    • 2010
  • The performance of an electrodialyzer for concentrating seawater is predicted by means of a computer simulation, which includes the following five steps; Step 1 mass transport; Step 2 current density distribution; Step 3 cell voltage; Step 4 NaCl concentration in a concentrated solution and energy consumption; Step 5 limiting current density. The program is developed on the basis of the following assumption; (1) Solution leakage and electric current leakage in an electrodialyzer are negligible. (2) Direct current electric resistance of a membrane includes the electric resistance of a boundary layer formed on the desalting surface of the membrane due to concentration polarization. (3) Frequency distribution of solution velocity ratio in desalting cells is equated by the normal distribution. (4) Current density i at x distant from the inlets of desalting cells is approximated by the quadratic equation. (5) Voltage difference between the electrodes at the entrance of desalting cells is equal to the value at the exits. (6) Limiting current density of an electrodialyzer is defined as average current density applied to an electrodialyzer when current density reaches the limit of an ion exchange membrane at the outlet of a desalting cell in which linear velocity and electrolyte concentration are the least. (7) Concentrated solutions are extracted from concentrating cells to the outside of the process. The validity of the computer simulation model is demonstrated by comparing the computed results with the performance of electrodialyzers operating in salt-manufacturing plants. The model makes it possible to discuss optimum specifications and operating conditions of a practical-scale electrodialyzer.

Heat and mass transfer analysis in air gap membrane distillation process for desalination

  • Pangarkar, Bhausaheb L.;Sane, Mukund G.
    • Membrane and Water Treatment
    • /
    • 제2권3호
    • /
    • pp.159-173
    • /
    • 2011
  • The air gap membrane distillation (AGMD) process was applied for water desalination. The main objective of the present work was to study the heat and mass transfer mechanism of the process. The experiments were performed on a flat sheet module using aqueous NaCl solutions as a feed. The membrane employed was hydrophobic PTFE of pore size 0.22 ${\mu}m$. A mathematical model is proposed to evaluate the membrane mass transfer coefficient, thermal boundary layers' heat transfer coefficients, membrane / liquid interface temperatures and the temperature polarization coefficients. The mass transfer model was validated by the experimentally and fitted well with the combined Knudsen and molecular diffusion mechanism. The mass transfer coefficient increased with an increase in feed bulk temperature. The experimental parameters such as, feed temperature, 313 to 333 K, feed velocity, 0.8 to 1.8 m/s (turbulent flow region) were analyzed. The permeation fluxes increased with feed temperature and velocity. The effect of feed bulk temperature on the boundary layers' heat transfer coefficients was shown and fairly discussed. The temperature polarization coefficient increased with feed velocity and decreased with temperature. The values obtained were 0.56 to 0.82, indicating the effective heat transfer of the system. The fouling was observed during the 90 h experimental run in the application of natural ground water and seawater. The time dependent fouling resistance can be added in the total transport resistance.

Carboxylic acid 함유한 음이온성 Poly(bis[4-(3-aminophenoxy)phenyl]sulfone/trimellite amide) 한외여과막의 투과특성 (Permeation of Ultrafiltration Membranes of Anion Charged poly(bis[4-(3-aminophenoxy) phenyl]sulfone/trimellite amide) Containing Carboxylic Acid)

  • 전종영
    • 멤브레인
    • /
    • 제19권2호
    • /
    • pp.104-112
    • /
    • 2009
  • 본 연구에서는 용매로 N-methyl-2-pyrrollidone을 사용하여, 상전환 방법으로 carboxylic acid를 함유한 음이온성 한외여과막을 제조하였다. 첨가제, 제막조건 및 운전조건에 따른 투과 특성을 알아보았다. Bovin serum albumin (BSA) 수용액의 pH에 따른 상대투과유속을 측정하여 fouling형성에 따른 투과 특성의 변화를 살펴보았다. 투과 특성은 막 제조환경과 투과 공정에 영향을 받았다. 이온교환용량과 측정 온도가 증가할수록, 그리고 BSA의 등전점으로부터 수용액의 pH값이 멀어질수록 상대투과유속이 증가하였다.