• Title/Summary/Keyword: membrane processes

Search Result 775, Processing Time 0.023 seconds

Concentration of Vanadium in Jeju Groundwater Using Reverse Osmosis Processes (역삼투 공정을 이용한 제주 지하수의 바나듐 농축)

  • Lee, Ho-Won;Moon, Soo-Hyoung;Ko, Kyung-Soo
    • Membrane Journal
    • /
    • v.18 no.3
    • /
    • pp.241-249
    • /
    • 2008
  • This study is to concentrate vanadium in Jeju groundwater using reverse osmosis processes, and to utilize the concentrate for vanadium water. Groundwater samples were taken from Wahyul, Ayum, and Seogwipo groundwater wells with different in vanadium content each other. Their vanadiuln concentrations were 31.8, 44.5, and 53.0 ppb, respectively. The rejection coefficients of every component in groundwater were increased with the increase of TMP At the TMP of $8 kg_f/cm^2$, the rejection coefficients of vanadium, sodium, potassium, aluminium, iron, and barium were $97.4%{\sim}99.0%,\;97.7%{\sim}97.8%,\;98.0%{\sim}98.3%,\;94.8%{\sim}97.5%,\;88.0%{\sim}96.4.0%$, and $97.9{\sim}98.0%$, respectively. And those of magnesium, calcium, chromium, mauganese, and strontium in three groundwater were more than 99.0% at the same TMP. It was possible that vanadium contents of Wahyul, Ayum and Seogwipo groundwater were concentrated into 58.6, 118.9, and 165.1 ppb, respectively, by 6 stages treatment at the recovery ratio of 15%. And these concentrated water (vanadium water) did not exceed the permissible drinking water standards.

Eine Structure of Digital Arteries in Rat (흰쥐 수지동맥의 미세구조에 관한 연구)

  • Kim, Baik-Yoon;Shin, Keun-Nam
    • Applied Microscopy
    • /
    • v.29 no.1
    • /
    • pp.83-94
    • /
    • 1999
  • The ultrastructure of small arterioles and capillaries in the lumbrical muscles of rat digits were studied by electron microscopy and following results were obtained. 1. The diameter of small arterioles of rat digits were $12\sim20{\mu}m$, and it was relatively smaller than human $(30\sim35{\mu}m)$. 2. All the endothelial cells of small arterioles and capillaries in the lumbrical muscles of rat digits were continuous type, and they had typical morphological characteristics of continuous endothelial cells : numerous cytoplasmic pinocytic vesicles and many tight junctions between the endothelial cells. 3. In the small arterioles subendothelial layers were irregularly spaced beneath the basal lamina, and membrane to membrane contacts were found between the endothelial cells and smooth muscle cells. 4. Pericytes were often found nearby capillary endothelium, and their cytoplasmic processes surrounded part of endothelial cells. They were enclosed by basal lamina. 5. Smooth muscle cells in tunica media of small arterioles were only one layered, that is, they were terminal arterioles. Sarcoplasm of smooth muscle cell was divided to 2 areas; homogeneous or filamentous area and non-homogeneous perinuclear area. 6. The tunica adventitia contained fibroblasts with extremely attenuated cytoplasmic processes and collagen fibirls.

  • PDF

Ultrastructural Study of the Effect of Activated Carbon Treatment on the Mouse Kidney Treated with Lead (납 투여된 마우스의 신장에서 활성탄 처리 효과에 대한 전자현미경적 연구)

  • Chung, Min-Ju;Yoon, Jung-Sik;Chung, Kyung-A;Kim, Young-Ho;Roh, Young-Bok
    • Applied Microscopy
    • /
    • v.29 no.2
    • /
    • pp.149-162
    • /
    • 1999
  • For investigation of the activated carbon on the mouse kidney treated with Pb, the activated carbon (40 mg/kg) and Pb (30 mg/kg) were treated orally for three and six weeks, respectivelly, and observed by the electron microscope. On the glomerulus of the group with only Pb, the basal membrane thicked, projected, and the foot processes fused. On the proximal convoluted tubules, the number of microvilli were decreased and the number of vacuoles and lysosome increased on the cytoplasm. The mitochondria and endoplasmic reticulum were extended and ribosomes dropped from the ER. On the giomerulus of the group with Pb-activated carbon, the basal membrane and the foot processes were merely changed. On the proximal convoluted tubules, the shapes and number of microvilli were not changed and the number of vacuoles, microbodies, and lysosomes decreased. The shapes of mitochondria and endoplasmic reticulum observed almost similar with control group. Th at is, elongated mitochondria and attached ribosomes to endoplasmic reticulum. As result, the activated carbon has positive effect on reducing toxicity of lead in the mouse kidney in the view of electron microscope.

  • PDF

[ $Ca^{2+}\;and\;K^+$ ] Concentrations Change during Early Embryonic Development in Mouse (생쥐 초기 배 발달 동안 변화되는 칼슘과 포타슘 이온)

  • Kang D.W.;Hur C.G.;Choi C.R.;Park J.Y.;Hong S.G.;Han J.H.
    • Journal of Embryo Transfer
    • /
    • v.21 no.1
    • /
    • pp.35-43
    • /
    • 2006
  • Ions play important roles in various cellular processes including fertilization and differentiation. However, it is little known whether how ions are regulated during early embryonic development in mammalian animals. In this study, we examined changes in $Ca^{2+}\;and\;K^+$ concentrations in embryos and oviduct during mouse early embryonic development using patch clamp technique and confocal laser scanning microscopy. The intracellular calcium concentration in each stage embryos did not markedly change. At 56h afier hCG injection when 8-cell embryos could be Isolated from oviduct, $K^+$ concentration in oviduct increased by 26% compared with that at 14h after injection of hCG During early embryonic development, membrane potential was depolarized (from -38 mV to -16 mV), and $Ca^{2+}$ currents decreased, indicating that some $K^+$ channel might control membrane potential in oocytes. To record the changes in membrane potential induced by influx of $Ca^{2+}$ in mouse oocytes, we applied 5 mM $Ca^{2+}$ to the bath solution. The membrane potential transiently hyperpolarized and then recovered. In order to classify $K^+$ channels that cause hyperpolarization, we first applied TEA and apamin, general $K^+$ channel blockers, to the bath solution. Interestingly, the hyperpolarization of membrane potential still appeared in oocytes pretreated with TEA and apamin. This result suggest that the $K^+$ channel that induces hyperpolarization could belong to another $K^+$ channel such as two-pore domain $K^+(K_{2P})$channel that a.e insensitive to TEA and apamin. From these results, we suggest that the changes in $Ca^{2+}\;and\;K^+$ concentrations play a critical role in cell proliferation, differentiation and reproduction as well as early embryonic development, and $K_{2P}$ channels could be involved in regulation of membrane potential in ovulated oocytes.

Chitosan Increases the Release of Renal Dipeptidase from Porcine Renal Proximal Tubule Cells

  • Hyun Joong, Yoon;Kim, Young-Ho;Park, Sung-Wook;Lee, Hwanghee-Blaise;Park, Haeng-Soon
    • Animal cells and systems
    • /
    • v.7 no.4
    • /
    • pp.309-315
    • /
    • 2003
  • Renal dipeptidase (RDPase, membrane dipeptidase, dehydropeptidase 1, EC 3.4.13.19) has been widely studied since it was first purified from porcine kidney brush border membrane. It was reported that RDPase activity in urine samples of acute and chronic renal failure patients decreases. Nitric oxide (NO) is a highly reactive free radical involved in a number of physiological and pathological processes. NO is able to act in a dual mode, leading either to induction of apoptosis or to blunted execution of programmed cell death. NO inhibited the RDPase release from porcine renal proximal tubules, which could be blocked by L-NAME. Chitosan, the linear polymer of D-glucosamine in $\beta$(1\longrightarrow4) linkage, not only reversed the decreased RDPase release by NO but also increased NO production in the proximal tubule cells. The stimulatory effect of NO on RDPase release from proximal tubules in the presence of chitosan must be different from the previously proposed mechanism of RDPase release via NO signaling pathway. Chitosan stimulated the RDPase release in the proximal tubules and increased RDPase activity to 220% and 250% at 0.1% and 1%, respectively. RDPase release was decreased to about 40% in the injured proximal tubules and was recovered in proportion to the increase of chitosan. Chitosan may be useful in recovery of renal function from $HgCl_2$injury.

Cloning of a matrix metalloproteinase cDNA from Scylliorhinus torazame (두툽상어 matrix metalloproteinase 유전자 cDNA의 클로닝)

  • Kim, Jon Won;Cho, Won Jin;Chun, Kwang Ho;Kim, Kyu-Won;Kim, Yung-Jin;Lee, Sang-Jun;Shin, Hae-Ja;Lim, Woon Ki
    • Journal of Life Science
    • /
    • v.8 no.3
    • /
    • pp.235-240
    • /
    • 1998
  • Matrix metalloproteinases(MMPs) are a group of zinc enzymes responsible for degradation of the matrix components such as collagen and proteoglycans in normal embryogenesis and remodeling and in many disease processes such as arthritis, cancer, periodontitis, and osteprocess. Genetically distince MMPs have been characterized and their genes have been cloned thus far from a variaty of species but not from fishes. In this stydy, a mmp cDNA was cloned by using RT-PCR(reverse transcriptase dependent polymerase chain reaction) from Scylliorhinus toraxzame(shark), agroup of cartilaginous fish, abundant in the coast of Pusan, Korea. It has 74% base homologue with membrane type matrix matalloproteinase-3 genes(mt3-mmps) from human, rat and chick, and also shows more than 90% residue homologue with them. In addition, it has cysteine switch domain, zinc binding domain(HExGH motif), propeptide cleavage site, and RRKR motif, which are present in MMPs. This result indicates that cDNA fragment cloned here may be mt3-mmp or its analogous gejne cDNA fragment of Scylliorhinus torzame.

  • PDF

Effects of magnetic ion exchange resin with PACI coagulation on removal of natural organic matter and MF fouling (자성체 이온교환 수지와 PACI 응집에 의한 국내 주요 수계 내 자연유기물 제거 특성 및 막오염 저감 효과)

  • Choi, Yang Hun;Jeong, Young Mi;Kim, Young Sam;Lee, Seung Ryul;Kweon, Ji Hyang;Kwon, Soon Buhm
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.1
    • /
    • pp.131-140
    • /
    • 2008
  • The application of magnetic ion exchange resin($MIEX^{(R)}$) is effective for natural organic matter(NOM) removal and for control of the formation of disinfection byproducts(DBPs). NOM removal is also enhanced by adding $MIEX^{(R)}$ with coagulant such as polyaluminium chloride(PACl) in conventional drinking water treatment systems. In the application of $MIEX^{(R)}$, it is important to understand changes of NOM characteristics such as hydrophobicity and molecular weight distributions with $MIEX^{(R)}$ or $MIEX^{(R)}$+coagulant treatment.To observe characteristics of NOM by treatment with $MIEX^{(R)}$ or $MIEX^{(R)}$+coagulant, four major drinking water sources were employed. Results showed that the addition of $MIEX^{(R)}$ to coagulation significantly reduced the amount of coagulant required for the optimum removal of dissolved organic matter(DOC) and turbidity in the all four waters. The DOC removal was also increased approximately 20%, compared to coagulant treatment alone. The process with $MIEX^{(R)}$ and coagulant showed that complementary removal of hydrophobic and hydrophilic fraction of DOC. The combined processes preferentially removed the fractions of intermediate (3,000-10,000 Da) and low (< 500 Da) molecular weight. The microfiltration test showed that membrane cake resistance was decreased for waters with flocs from $MIEX^{(R)}$+coagulant. A porous layer was formed to $MIEX^{(R)}$ on the membrane surface and the layer consequently inhibited settling of coagulant flocs, which could act on a foulant.

BIOCOMPATIBILITY OF ABSORBABLE COLLAGEN MEMBRANES IN HUMAN PDL-DERIVED FIBROBLASTS IN VITRO (인간 치주인대 유래 섬유모세포에 대한 흡수성 교원질 차폐막의 생체적합성)

  • Kwon, Yong-Dae;Lee, Baek-Soo;Jue, Sung-Sook
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.32 no.3
    • /
    • pp.272-278
    • /
    • 2006
  • Purpose: This study is designed to evaluate biocompatibility of three types of absorbable collagen GBR membrane in vitro. Material and Method: The human PDL fibroblasts culture was obtained through typical way and the cells used in the experiment was forth passage. The membranes examined were Experimental group A, B, C. All the 3-experimental groups were made of bovine pericardium and the membranes were excised into 5$\times$5mm respectively. The samples of the membranes were fixed on the 24-well plate with the double-sided adhesive tape. Then, 2ml of cell suspension which included $2{\times}10^4$cells was inoculated into the 24-well plate, and the cells were cultured for 1 week. Cellular viability and the alkaline phosphatase activity were measured with ELISA. The membranes in the culture were processed to examine with SEM. Results: The survival rate was highest in control and Experimental group A is the next, group B and group C in order of the value. The values are analyzed for statistical difference using Wilcoxon test. All the values of experimental groups are significantly lower than those of control, and the vaules among the experimental groups significantly differ from each other. Alkaline phosphatase level was identical order with the viable cell rate. SEM examination revealed that the PDL fibroblasts adherent on culture dish (control) and group A were spindle-shaped, but on group B and C, the cells were round-shaped without processes.

Diabetic Nephropathy in Childhood and Adolescence (II) ; Pathology and Pathophysiology (소아청소년기 당뇨병성 신병증 (II) ; 병리 소견 및 병태생리를 중심으로)

  • Ha, Tae-Sun
    • Childhood Kidney Diseases
    • /
    • v.13 no.2
    • /
    • pp.99-117
    • /
    • 2009
  • Diabetic nephropathy is a major cause of chronic renal failure in developing countries, and the prevalence rate has markedly increased during the past decade. Diabetic nephropathy shows various specific histological changes not only in the glomeruli but also in the tubulointerstitial region. In the early stage, the effacement of podocyte foot processes and thickened glomerular basement membrane (GBM) is noticed even at the stage of microalbuminuria. Nodular, diffuse, and exudative lesions, so-called diabetic glomerulosclerosis, are well known as glomerular lesions. Interstitial lesions also exhibit fibrosis, edema, and thickened tubular basement membrane. Diabetic nephropathy is considered to be multifactorial in origin with increasing evidence that one of the major pathways involved in the development and progression of diabetic nephropathy as a result of hyperglycemia. Hyperglycemia induces renal damage directly or through hemodynamic alterations, such as, glomerular hyperfiltration, shear stress, and microalbuminuria. Chronic hyperglycemia also induces nonhemodynamic dysregulations, such as, increased production of advanced glycosylation endproducts, oxidative stress, activation of signal pathway, and subsequent various cytokines. Those pathogenic mechanisms resulted in extracellular matrix deposition including mesangial expansion and GBM thickening, glomerular hypertrophy, inflammation, and proteinuria. In this review, recent opinions on the histopathologic changes and pathophysiologic mechanisms leading to initiation and progression of diabetic nephropathy will be introduced.

Analysis of Total Bacteria, Enteric Members of γ-proteobacteria and Microbial Communities in Seawater as Indirect Indicators for Quantifying Biofouling

  • Lee, Jin-Wook;Kim, Sung-Min;Jung, Ji-Yeon;Oh, Byung-Soo;Kim, In S.;Hong, Soon-Kang
    • Environmental Engineering Research
    • /
    • v.14 no.1
    • /
    • pp.19-25
    • /
    • 2009
  • In this study, total bacteria, enteric members of the $\gamma$-proteobacteria, and microbial communities in seawater were analyzed as indirect indicators for quantifying biofouling. Biomass in seawater can significantly affect feed water pretreatment and membrane biofouling of reverse osmosis desalination processes. The purpose of this paper is to investigate microbiological quantity and quality of seawater at the potential intake of a desalination plant. For this analysis, the total direct cell count (TDC) using 4'-6-diamidino-2-phenylindole (DAPI)-staining and DNA-based real-time PCR were used to quantify the total bacteria and relative content of enteric members of $\gamma$-proteobacteria in seawater, respectively. In addition, microbial communities were examined using 16S rRNA gene cloning and bacterial isolation to identify the most abundant bacteria for a further biofouling study. The experimental results of this study identified about $10^6$ cells/mL of (total) bacteria, $10^5$ 16S rRNA gene copies/mL of enteric $\gamma$-proteobacteria, and the presence of more than 20 groups of bacteria.