[ $Ca^{2+}\;and\;K^+$ ] Concentrations Change during Early Embryonic Development in Mouse

생쥐 초기 배 발달 동안 변화되는 칼슘과 포타슘 이온

  • Kang D.W. (Department of Physiology, College of Medicine, Institute of Health Science, Gyeongsang National University) ;
  • Hur C.G. (Department of Physiology, College of Medicine, Gyeongsang National Universtiy) ;
  • Choi C.R. (Department of Physiology, College of Medicine, Gyeongsang National Universtiy) ;
  • Park J.Y. (Department of Physiology, College of Medicine, Institute of Health Science, Gyeongsang National University) ;
  • Hong S.G. (Department of Physiology, College of Medicine, Institute of Health Science, Gyeongsang National University) ;
  • Han J.H. (Department of Physiology, College of Medicine, Institute of Health Science, Gyeongsang National University)
  • 강다원 (경상대학교 의과대학 생리학교실, 경상대학교 건강과학연구원) ;
  • 허창기 (경상대학교 의과대학 생리학교실) ;
  • 최창록 (경상대학교 의과대학 생리학교실) ;
  • 박재용 (경상대학교 의과대학 생리학교실, 경상대학교 건강과학연구원) ;
  • 홍성근 (경상대학교 의과대학 생리학교실, 경상대학교 건강과학연구원) ;
  • 한재희 (경상대학교 의과대학 생리학교실, 경상대학교 건강과학연구원)
  • Published : 2006.03.01

Abstract

Ions play important roles in various cellular processes including fertilization and differentiation. However, it is little known whether how ions are regulated during early embryonic development in mammalian animals. In this study, we examined changes in $Ca^{2+}\;and\;K^+$ concentrations in embryos and oviduct during mouse early embryonic development using patch clamp technique and confocal laser scanning microscopy. The intracellular calcium concentration in each stage embryos did not markedly change. At 56h afier hCG injection when 8-cell embryos could be Isolated from oviduct, $K^+$ concentration in oviduct increased by 26% compared with that at 14h after injection of hCG During early embryonic development, membrane potential was depolarized (from -38 mV to -16 mV), and $Ca^{2+}$ currents decreased, indicating that some $K^+$ channel might control membrane potential in oocytes. To record the changes in membrane potential induced by influx of $Ca^{2+}$ in mouse oocytes, we applied 5 mM $Ca^{2+}$ to the bath solution. The membrane potential transiently hyperpolarized and then recovered. In order to classify $K^+$ channels that cause hyperpolarization, we first applied TEA and apamin, general $K^+$ channel blockers, to the bath solution. Interestingly, the hyperpolarization of membrane potential still appeared in oocytes pretreated with TEA and apamin. This result suggest that the $K^+$ channel that induces hyperpolarization could belong to another $K^+$ channel such as two-pore domain $K^+(K_{2P})$channel that a.e insensitive to TEA and apamin. From these results, we suggest that the changes in $Ca^{2+}\;and\;K^+$ concentrations play a critical role in cell proliferation, differentiation and reproduction as well as early embryonic development, and $K_{2P}$ channels could be involved in regulation of membrane potential in ovulated oocytes.

이온 통로 및 이온 농도의 변화는 수정 현상을 포함한 다양한 세포 기능에 중요한 역할을 한다. 그러나 이러한 이온의 변화가 포유동물 배의 발달과정에 어떻게 관여하는지에 대해서는 알려진 바가 적다. 본 연구에서는 생쥐난자가 수정 이후 배 발달 과정을 거치는 동안 나타나는 칼슘과 포타슘 이온의 변화를 전기생리학적 실험 기법과 공초점 현미경을 이용하여 조사하였다. 수정 시에 나타나는 일시적인 세포내 칼슘 농도 변화는 활성 전류(수정 전류)와 함께 동반되었다. 그러나 수정과 같은 극적인 현상이나 자극이 없는 시기에는 세포내 칼슘 농도가 배 발달 시기와 상관없이 일정한 수준으로 유지되었다. 이것은 세포내외의 칼슘 농도의 보상현상으로도 설명할 수 있을 것이다. 배 발달이 진행됨에 따라 난관액의 포타슘 농도는 계속 증가하여 8세포기 배에서는 난자보다 26% 증가하였다. 상실배, 포배기에서는 포타슘 농도가 감소하였다. 배 발달이 진행됨에 따라 주로 포타슘 이온에 의해 조절되는 막 전압은 탈분극되고, 칼슘 이온의 세포 안으로의 유입은 점점 감소하였다. 생쥐 난자에 5 mM의 칼슘을 처리하였을 때 막 전압은 일시적인 과분극 현상을 보이다가 회복되었다. 칼슘 유입에 따른 막 전압 변화에 관여하는 포타슘 통로를 확인하기 위하여 포타슘 통로 차단제를 전 처리한 후 칼슘을 처리한 결과, 칼슘만을 단독으로 처리한 결과와 유의한 차이를 보이지 않았다. 막 전압의 과분극 현상은 잘 알려진 포타슘 통로 차단제인 TEA에 억제되지 않았다. 그리고 small conductance $Ca^{2+}$-activated 포타슘 통로 차단제 인 apamin에 의해서도 억제되지 않았다. 따라서 생쥐 난자에서 과분극을 유발시키는 포타슘 통로는 TEA와 apamin에 억제되지 않는 다른 포타슘 통로로 생각된다. 이상의 결과로부터 배 발달 동안 변화되는 칼슘과 포타슘 이온은 수정 및 초기 배 발달에 중요한 인자로써 작용할 것으로 생각되며, two-pore domain 포타슘 통로가 난자의 막 전압 조절에 관여할 가능성을 제시한다.

Keywords

References

  1. Bae IH and Park JH. 1987. Studies do the requirements of $Ca^{2+}$ for cell division and $Ca^{2+}$ permeability of plasma membrane of fast dividing mouse embryo cells. Kor. J. Fert. Steril., 14:93-100
  2. Bavister BD. 1988. A minichamber device for maintaining a constant carbon dioxide in air atmosphere during prolonged culture of cells on the stage of an inverted microscope. In Vitro Cell Dev. Biol., 24(8):759-763 https://doi.org/10.1007/BF02623645
  3. Burkman LJ, Overstreet JW and Katz DF. 1984. A possible role for potassium and pyruvate in the modulation of sperm motility in the rabbit oviducal isthmus. J. Reprod. Fertil., 71(2):367-376 https://doi.org/10.1530/jrf.0.0710367
  4. Collins JL and Baltz JM. 1999. Estimates of mouse oviductal fluid tonicity based on osmotic responses of embryos. Biol. Reprod., 60(5): 1188-1193 https://doi.org/10.1095/biolreprod60.5.1188
  5. Czirjak G, Toth ZE and Enyedi P. 2004. The two-pore domain $K^+$ channel, TRESK, is activated by the cytoplasmic calcium signal through calcineurin. J. Biol. Chem., 279(18):18550-18558 https://doi.org/10.1074/jbc.M312229200
  6. Day ML, Pickering SJ, Johnson MH and Cook DI. 1993. Cell-cycle control of a large-conductance $K^+$ channel in mouse early embryos. Nature, 365(6446):560-562 https://doi.org/10.1038/365560a0
  7. Defelice LJ. 1997. Electrical Properties of Cells, Patch Clamp for Biologists. Springer, New York, Chap 2, pp. 49-122
  8. Fraser LR. 1982. $Ca^{2+}$ is required for mouse sperm capacitation and fertilization in vitro. J. Androl., 3(6):412-419 https://doi.org/10.1002/j.1939-4640.1982.tb00712.x
  9. Galli C and Lazzari G. 1996. Practical aspects of IVM/IVF in cattle. Anim. Reprod. Sci., 42:371-379 https://doi.org/10.1016/0378-4320(96)01530-8
  10. Grippo AA, Henault MA, Anderson SH and Killian GJ. 1992. Cation concentrations in fluid from the oviduct ampulla and isthmus of cows during the estrous cycle. J. Dairy Sci., 75(1):58-65 https://doi.org/10.3168/jds.S0022-0302(92)77738-8
  11. Homa ST, Carroll J and Swann K. 1993. The role of calcium in mammalian oocyte maturation and egg activation. Hum. Reprod., 8:1274-1281 https://doi.org/10.1093/oxfordjournals.humrep.a138240
  12. Hosey MM, Chang FC, O'Callahan CM and Ptasienski J. 1989. L-type calcium channels in cardiac and skeletal muscle. Ann. N. Y. Acad. Sci., 56:27-38
  13. Hugentobler S, Morris DG, Kane MT and Sreenan JM. 2004. In situ oviduct and uterine pH in cattle. Theriogenology, 61(7-8):1419-1427 https://doi.org/10.1016/j.theriogenology.2003.08.008
  14. Jaffe LF. 1983. Sources of calcium in egg activation: A review and hypo-thesis. Dev. Biol., 99: 265-276 https://doi.org/10.1016/0012-1606(83)90276-2
  15. Kim D. 2005. Physiology and pharmacology of two-pore domain potassium channels. Curr. Pharm. Des., 11(21):2717-2736 https://doi.org/10.2174/1381612054546824
  16. Kolajova M, Hammer MA, Collins JL and Baltz JM. 2001. Developmentally regulated cell cycle dependence of swelling-activated anion channel activity in the mouse embryo. Development, 128(18):3427-3434
  17. Mitani S. 1985 The reduction of calcium current associated with early differentiation of the murine embryo. J. Physiol., 363(1):71-86 https://doi.org/10.1113/jphysiol.1985.sp015696
  18. Miyazaki Sand Igusa Y. 1981. Fertilization potential in golden hamster eggs consists of recurring hyperpolarizations. Nature, 290(5808):702-704 https://doi.org/10.1038/290702a0
  19. Okamoto H, Takahashi K, and Yamashita N. 1977. Ionic currents through the membrane of the mammalian oocyte and their comparison with those in the tunicate and sea urchin. J. Physiol., 267(2):465-495 https://doi.org/10.1113/jphysiol.1977.sp011822
  20. Stock CE and Fraser LR. 1989. Divalent cations, capacitation and the acrosome reaction in human spermatozoa. J. Reprod. Fertil., 87(2):463-478 https://doi.org/10.1530/jrf.0.0870463
  21. Tosti E and Boni R. 2004. Electrical events during gamete maturation and fertilization in animals and humans. Hum. Reprod. Update, 10(1):53-65 https://doi.org/10.1093/humupd/dmh006
  22. Trimarchi JR, Liu L, Smith PJ and Keefe DL. 2002. Apoptosis recruits two-pore domain potassium channels used for homeostatic volume regulation. Am. J. Physiol. Cell Physiol., 282:C588-594 https://doi.org/10.1152/ajpcell.00365.2001
  23. Winston NJ, Johnson MH, McConnell JM, Cook DI and Day ML. 2004. Expression and role of the ether-a-go-go-related (MERG1A) potassium-channel protein during preimplantation mouse development. Biol. Reprod., 70(4):1070-1079 https://doi.org/10.1095/biolreprod.103.020917
  24. Yanagimachi R. 1982. Requirement of extracellular calcium ions for various stages of fertilization and fertilization-related phenomena in the hamster. Mol. Reprod. Dev., 5(4):323-344