• Title/Summary/Keyword: membrane process

Search Result 2,222, Processing Time 0.028 seconds

Simulation of Separation Properties of Propylene/propane in Silver Nanoparticle Containing Facilitated Transport Membrane (전산모사 프로그램을 이용한 은나노함유 촉진수송막의 프로필렌/프로판 분리특성 예측)

  • Park, Chae Young;Han, Sang Hoon;Kim, Jeong Hoon;Lee, Yongtaek
    • Membrane Journal
    • /
    • v.24 no.5
    • /
    • pp.409-415
    • /
    • 2014
  • This study is aimed to separate propylene and propane using membrane process instead of NCC(Naphtha Cracking Center) $C_3$ splitter. Membrane process is a low energy consumption and eco-friendly process while $C_3$ splitter requires high energy consumption in petrochemical processes. In this study, high performance facilitated transport membrane (FTM) is used for propylene/propane separation. FTM module was prepared on top of porous polyetherimide hollow fiber using PVP/$AgBF_4$/TCNQ. We developed simulation program predicting the membrane separation properties under operation conditions. Separation properties of FTM module for propylene and propane were obtained from the simulation program based on the pure gas permeation data. Based on these results, it is predicted that an one-stage membrane process provides 99.5% of propylene at permeate side from a binary gas mixture of 95/5 vol% $C_3H_6$ / vol% $C_3H_8$ supplied as a feed gas.

Evaluation of Water Quality Change by Membrane Damage to Pretreatment Process on SDI in Wastewater Reuse (하수재이용에서 전처리 막 손상에 의한 수질변화가 SDI에 미치는 영향평가)

  • Lee, Min Soo;Seo, Dongjoo;Lee, Yong-Soo;Chung, Kun Yong
    • Membrane Journal
    • /
    • v.32 no.4
    • /
    • pp.253-263
    • /
    • 2022
  • This study suggests a guideline for designing unit process of wastewater reuse in terms of a maintenance of the process based on critical parameters to draw a high quality performance of RO unit. Defining the parameters was done by applying membrane integrity test (MIT) in pretreatment process utilizing lab-scale MF. SDI is utilized for judging whether permeate is suitable to RO unit. However, result said TOC concentration matching with particle count analysis is better for judging the permeate condition. When membrane test pressure (Ptest) was measured to derive log removal value in PDT, virgin state of membrane fiber was used to measure dynamic contact angle utilizing surface tension of the membrane fiber. Actually, foulant affects to the state of membrane surface, and it decreases the Ptest value along with time elapsed. Consequently, LRVDIT is also affected by Ptest value. Thus, sensitivity of direct integrity test descends with result of Ptest value change, so Ptest value should be considered not the virgin state of the membrane but its current state. Overall, this study focuses on defining design parameters suitable to MF pretreatment for RO process in wastewater reuse by assessing its impact. Therefore, utilities can acknowledge that the membrane surface condition must be considered when users conduct the direct integrity test so that Ptest and other relative parameter used to calculate LRVDIT are adequately measured.

Assesment of Powdered Activated Carbon Effect on PAC+MF Hybrid Membrane Process (분말활성탄(PAC)+막여과(MF) 조합공정에서 PAC의 영향 평가)

  • Kim, Byung S.;Wang, Chang K.;Lim, Jae L.;Kim, Chung H.
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.5
    • /
    • pp.517-522
    • /
    • 2008
  • This study aims at an assessment of the effectiveness of taste & odor removal and transmembrane pressure changes in a pilot membrane plant(500m3/day) by adding PAC to MF process, and at providing a basis for applying it to the advanced water treatment process. The transmembrane pressure showed, in low turbidity of raw water, a tendency to decrease when PAC was injected at the Flux of 1, $1.5m^3/m^2{\cdot}d$, while it increased in high Flux($1.5m^3/m^2{\cdot}d$) in high turbidity of raw water. in addtion, it is shown that the fouling could be reduced more when PAC is injected together with appropriate amount of coagulant, than when PAC is solely injected. Taste & Odor-causing 2-MIB may not be detected in membrane filtered water, if the amount of PAC injection is increased in accordance with the increasing concentration of 2-MIB. Hence, PAC injection, as a pre-treatment process in MF membrane filtering, is supposed to be a suitable process for reducing fouling as well as for improvement effectiveness of taste & odor treatment.

Efficiency of Nutrient Removal and Biomass Productivity in The Wastewater by Microalgae Membrane Bioreactor Process (Microalgae Membrane Bioreactor (MMBR) 공정에서 하수의 영양염류 제거와 바이오매스 생산성 효율)

  • Choi, Hee-Jeong
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.4
    • /
    • pp.386-393
    • /
    • 2014
  • The aim of this study was to investigate the nutrient removal and biomass productivity in the wastewater using MMBR (Microalgae Membrane Bioreactor). MMBR process was combined OPPBR (Optical Panel Photobioreactor) and MBR (Membrane bioreactor). The OPPBR and MBR were operated 3 days and 9h HRT (Hydraulic retention time), respectively, using microalgae as Chlorella vulgaris. The obtained result indicated that the biomass productivity of 0.498 g/L/d with light transmittance of 92% at a 305 mm depth in the OPPBR was achieved. The total consumption of BOD (Biochemical Oxygen Demand) and COD (Chemical Oxygen Demand) in the MMBR were found to be 97.56% and 96.06%, respectively. Additionally, the removal of TN, $NO_3-N$, TP and $PO_4-P$ were 94.94%, 91.04%, 99.54% and 93.06% in MMBR, respectively. These results indicated that the MMBR process was highly effective for COD, BOD and nutrient removal when compared to the separate OPPBR or MBR process. The MMBR process was effective for nutrient removal and biomass productivity and can be applied to treat wastewater in sewage treatment plant.

Industrial dairy wastewater purification by shear-enhanced membrane filtration: The effects of vibration

  • Kertesz, Szabolcs
    • Membrane and Water Treatment
    • /
    • v.5 no.2
    • /
    • pp.73-86
    • /
    • 2014
  • Membrane fouling is a major challenge limiting the use of membrane applications. In this study high induced shear rates were utilized at the membrane surface in order to reduce the organic and inorganic scaling by using the torsional vibration of flat sheet membranes. The performances of a vibratory shear-enhanced processing (VSEP) system for the ultrafiltration (UF), nanofiltration (NF) and reverse osmosis (RO) membrane filtration of industrial dairy wastewater were investigated. The vibration and non-vibration methods were compared with the same membrane and operational parameters during the purification of real dairy industrial process wastewater. In the initial experiments, short-term tests were carried out in which the effects of vibration amplitude, recirculation flow rate and transmembrane pressure were measured and compared. The permeate flux, turbidity, conductivity and chemical oxygen demand (COD) reduction of dairy wastewater were investigated by using UF, NF and RO membranes with vibration and non-vibration methods. In the subsequent experiments, concentration tests were also carried out. Finally, scanning electron microscopy (SEM) revealed that the vibration method gave a better performance, which can be attributed to the higher membrane shear rate, which reduces the concentration of solids at the membrane, and the transmission.

Simulation of transport phenomena in porous membrane evaporators using computational fluid dynamics

  • Mohammadi, Mehrnoush;Marjani, Azam;Asadollahzadeh, Mehdi;Hemmati, Alireza;Kazemi, Seyyed Masoud
    • Membrane and Water Treatment
    • /
    • v.7 no.2
    • /
    • pp.87-100
    • /
    • 2016
  • A numerical simulation of membrane evaporation process was carried out in this work. The aim of simulation is to describe transport of water through porous membranes applicable to the concentration of aqueous solutions. A three-dimensional mathematical model was developed which considers transport phenomena including mass, heat, and momentum transfer in membrane evaporation process. The equations of model were then solved numerically using finite element method. The results of simulation in terms of evaporation flux were compared with experimental data, and confirmed the accuracy of model. Moreover, profile of pressure, concentration, and heat flux were obtained and analyzed. The results revealed that developed 3D model is capable of predicting performance of membrane evaporators in concentration of aqueous solutions.

Membrane Contactors for Water Carbonation

  • Alessandra Criscuoli;Enrico Drioli
    • Membrane Journal
    • /
    • v.1 no.1
    • /
    • pp.59-59
    • /
    • 1991
  • A theoretical and experimental study made in order to determine the performance of mem-brane contactors in water carbonation is presented. In particular on the basis of experimental results pre-viously obtained it has been derived an expression in which the effect of some parameters as temprera-ture water and CO₂ flow rate CO₂ pressure trans-membrane pressure on the performance of the process is taken into account. The study refers to hollow fiber membrane contactors used for the experimental tests. The main scope has been to verify if by membrane contactors it is possible to reach the same de-gree of water carbonation as by trditional methods (1-5 g/1) and to derive for the module used a cor-relation able to describe the performance of the process at several operating conditions. The high CO₂ removal observed confirms the interesting potentialties of membrane contactors also in gas streams purification.

Development and Application Trend of Bipolar Membrane for Electrodialysis (전기투석용 바이폴라막의 개발 및 응용동향)

  • Kim, Deuk Ju;Nam, Sang Yong
    • Membrane Journal
    • /
    • v.23 no.5
    • /
    • pp.319-331
    • /
    • 2013
  • Electrodialysis with bipolar membranes (EDBM) has recently gained increasing attention for the recovery and production of acids or bases from the corresponding salt solutions and other high value-added business like food processing and biochemical industry. EDBM possesses economical and environmental benefits and can complex with other process such as ion exchange process, extraction and adsorption. So this paper investigates a brief overview of development for bipolar membrane and EDBM with the practical application.

Membrane Contactors for Water Carbonation

  • Alessandra Criscuoli;Enrico Drioli
    • Korean Membrane Journal
    • /
    • v.1 no.1
    • /
    • pp.59-64
    • /
    • 1999
  • A theoretical and experimental study made in order to determine the performance of mem-brane contactors in water carbonation is presented. In particular on the basis of experimental results pre-viously obtained it has been derived an expression in which the effect of some parameters as temprera-ture water and {{{{{CO }_{2 } }}}}} flow rate {{{{{CO }_{2 } }}}}} pressure trans-membrane pressure on the performance of the process is taken into account. The study refers to hollow fiber membrane contactors used for the experimental tests. The main scope has been to verify if by membrane contactors it is possible to reach the same de-gree of water carbonation as by trditional methods (1-5 g/1) and to derive for the module used a cor-relation able to describe the performance of the process at several operating conditions. The high {{{{{CO }_{2 } } }}}} removal observed confirms the interesting potentialties of membrane contactors also in gas streams purification.

  • PDF

Effects of ion-exchange for NOM removal in water treatment with ceramic membranes ultrafiltration

  • Kabsch-Korbutowicz, Malgorzata;Urbanowska, Agnieszka
    • Membrane and Water Treatment
    • /
    • v.3 no.4
    • /
    • pp.211-219
    • /
    • 2012
  • To enhance the efficiency of water treatment and reduce the extent of membrane fouling, the membrane separation process is frequently preceded by other physico-chemical processes. One of them might be ion exchange. The aim of this work was to compare the efficiency of natural organic matter removal achieved with various anion-exchange resins, and to verify their potential use in water treatment prior to the ultrafiltration process involving a ceramic membrane. The use of ion exchange prior to ceramic membrane ultrafiltration enhanced final water quality. The most effective was MIEX, which removed significant amounts of the VHA, SHA and CHA fractions. Separation of uncharged fractions was poor with all the resins examined. Water pretreatment involving an ion-exchange resin failed to reduce membrane fouling, which was higher than that observed in unpretreated water. This finding is to be attributed to the uncharged NOM fractions and small resin particles that persisted in the water.