DOI QR코드

DOI QR Code

Efficiency of Nutrient Removal and Biomass Productivity in The Wastewater by Microalgae Membrane Bioreactor Process

Microalgae Membrane Bioreactor (MMBR) 공정에서 하수의 영양염류 제거와 바이오매스 생산성 효율

  • Received : 2014.04.03
  • Accepted : 2014.06.05
  • Published : 2014.07.30

Abstract

The aim of this study was to investigate the nutrient removal and biomass productivity in the wastewater using MMBR (Microalgae Membrane Bioreactor). MMBR process was combined OPPBR (Optical Panel Photobioreactor) and MBR (Membrane bioreactor). The OPPBR and MBR were operated 3 days and 9h HRT (Hydraulic retention time), respectively, using microalgae as Chlorella vulgaris. The obtained result indicated that the biomass productivity of 0.498 g/L/d with light transmittance of 92% at a 305 mm depth in the OPPBR was achieved. The total consumption of BOD (Biochemical Oxygen Demand) and COD (Chemical Oxygen Demand) in the MMBR were found to be 97.56% and 96.06%, respectively. Additionally, the removal of TN, $NO_3-N$, TP and $PO_4-P$ were 94.94%, 91.04%, 99.54% and 93.06% in MMBR, respectively. These results indicated that the MMBR process was highly effective for COD, BOD and nutrient removal when compared to the separate OPPBR or MBR process. The MMBR process was effective for nutrient removal and biomass productivity and can be applied to treat wastewater in sewage treatment plant.

Keywords

References

  1. Abbegglen, C., Ospelt, M., and Siegrist, H. (2008). Biological Nutrient Removal in a Small-Scale MBR Treating Household Wastewater, Water Research, 42(1-2), pp. 338-346. https://doi.org/10.1016/j.watres.2007.07.020
  2. Abdel-Raouf, N., Al-Homaidan, A. A., and Ibraheem, I. B. M. (2012). Microalgae and Wastewater Treatment, Saudi Journal of Biological Science, 19, pp. 257-275. https://doi.org/10.1016/j.sjbs.2012.04.005
  3. Adov, S. S., Lee, D. J., Show, K. Y., and Tay, J. H. (2008). Aerobic Granular Sludge: Recent Advances, Biotechnology Advances, 26(5), pp. 411-423. https://doi.org/10.1016/j.biotechadv.2008.05.002
  4. Ahn, C. Y., Lee, J. Y., and Oh, H. M. (2013). Control of Microalgal Growth and Competition by N:P Ratio Manipulation, Korean Journal of Environmental Biology, 31(2), pp. 61-68. [Korean Literature] https://doi.org/10.11626/KJEB.2013.31.2.061
  5. Boelee, N. C., Temmink, H., Janssen, M., Buisman, C. J. N., and Wijffels, R. H. (2012). Scenario Analysis of Nutrient Removal from Municipal Wastewater by Microalgae Biofilms, Water, 4, pp. 460-473. https://doi.org/10.3390/w4020460
  6. Boonchai, R., Seo, G. T., Park, D. R., and Seong, C. Y. (2012). Microalgae Photobioreactor for Nitrogen and Phosphorus Removal from Wastewater of Sewage Treatment Plant, International Journal of Bioscience, Biochemistry and Bioinformatics, 2(6), pp. 407-410.
  7. Borghei, S. M., Sharbatmaleki, M., Pourrezaie, P., and Borghei, G. (2008). Kinetic of Organic Removal in Fixed-Bed Aerobic Biological Reactor, Bioresouce Technology, 99(5), pp. 1118-1124. https://doi.org/10.1016/j.biortech.2007.02.037
  8. Chen, C. Y., Yeh, K. L., Aisyah, R., Lee, D. J., and Chang, J. S. (2011). Cultivation, Photobioreactor Design and Harvesting of Microalgae for Biodiesel Production: A critical review, Bioresource Technology, 102(1), pp. 71-81. https://doi.org/10.1016/j.biortech.2010.06.159
  9. Choi, H. J., Lee, A. H., and Lee, S. M. (2012). Comparison between a Moving Bed Bioreactor and a Fixed Bed Bioreactor for Biological Phosphate Removal and Denitrification, Water Science and Technology, 65(10), pp. 1834-1838. https://doi.org/10.2166/wst.2012.847
  10. Choi, H. J., Lee, J. M., and Lee, S. M. (2013). A Novel Optical Panel Photobiorector for Cultivation of Microalgae, Water Science and Technology, 67(11), pp. 2543-2548. https://doi.org/10.2166/wst.2013.128
  11. Choi, H. J. and Lee, S. M. (2011). Effect of Temperature, Light Intensity and pH on the Growth Rate of Chlorella vulgaris, Korean Society of Environmental Engineering, 33(7), pp. 511-515. [Korean Literature] https://doi.org/10.4491/KSEE.2011.33.7.511
  12. Choi, H. J. and Lee, S. M. (2012). Effect of Photobioreactor with Optical Panel on the Growth Rate of Chlorella vulgaris, Korean Society of Environmental Engineering, 34(7), pp. 467-472. [Korean Literature] https://doi.org/10.4491/KSEE.2012.34.7.467
  13. Choi, H. J. and Lee, S. M. (2014). Effect of Optical Panel Thickness for Nutrient Removal and Cultivation of Microalgae in the Photobioreactor, Bioprocess and Biosystems Engineering, 37(4), pp. 697-705. https://doi.org/10.1007/s00449-013-1039-7
  14. Colak, O. and Kaya, Z. (1988). A Study on the Possibilities of Biological Wastewater Treatment Using Algae, Doga: Turkish Journal of biology, 12(1), pp. 18-29.
  15. Grobbelaar, J. U. (2000). Physiological and Technological Considerations for Optimizing Mass Algal Cultures, Journal of Applied Phycology, 12(3-5), pp. 201-206. https://doi.org/10.1023/A:1008155125844
  16. Haag, A. L. (2007). Algae Bloom Again, Nature, 447(7144), pp. 520-521. https://doi.org/10.1038/447520a
  17. Hsieh, C. H. and Wu, W. T. (2009). A Novel Photpbioreactor with Transparent Rectangular Chambers for Cultivation of Microalgae, Biochemical Engineering Journal, 46(3), pp. 300-305. https://doi.org/10.1016/j.bej.2009.06.004
  18. Jin, E., Polle, J. E. W., Lee, H. K., Hyun, S. M., and Chang, M. (2003). Xanthophylls in Microalgae: From Biosynthesis to Biotechnological Mass Production and Application, Journal of Microbiology and Biotechnoogy, 13(2), pp. 165-174.
  19. Kang, Z., Kim, B. H., Shim, S. Y., Oh, H. M., and Kim, H. S. (2012). Municipal Wastewater Treatment and Microbial Diversity Analysis of Microalgal Mini Raceway Open Pond, The Korean Journal of Microbiology, 48(3), pp. 192-199. https://doi.org/10.7845/kjm.2012.036
  20. Klausmeier, C. A., Litchman, E., Daufresne, T., and Levin, S. A. (2008). Phytoplankton Stoichiometry, Ecological Research, 23, pp. 479-485. https://doi.org/10.1007/s11284-008-0470-8
  21. Klausmeier, C. A., Litchman, E., and Simon, A. L. (2004). Phytoplankton Growth and Stoichiometry under Multiple Nutrient Limitations, Limnology and Oceanography, 49(4), pp. 1463-1470. https://doi.org/10.4319/lo.2004.49.4_part_2.1463
  22. Masojidek, J. and Torzillo, G. (2008). Mass Cultivation of Freshwater Microalgae; In Encyclopedia of Ecology, Academic Press, Oxford, UK, pp. 2226-2235.
  23. Moreno-Garrido, I. (2008). Microalgae Immobilization: Current Techniques and Uses, Bioresource Technology, 99(10), pp. 3949-3964. https://doi.org/10.1016/j.biortech.2007.05.040
  24. Ogbonna, J. C. and Tanaka, H. (2000). Light Requirement and Photosynthetic Cell Cultivation-Development of Processes for Efficient Light Utilization in Photobioreactors, Journal of Applied Phycology, 12(3-5), pp. 207-218. https://doi.org/10.1023/A:1008194627239
  25. Rusten, B., Eikebrokk, B., and Ulgenes, Y. (2006). Design and Operations of The Kindness Moving Bed Biofilm Reactors, Aquacultural Engineering, 34(3), pp. 322-331. https://doi.org/10.1016/j.aquaeng.2005.04.002
  26. Schindler, D. W. (2012). The Dilemma of Controlling Cultural Eutrophication of Lake, Proceedings of the Royal Society B; Biological Sciences, 279 (1746), pp. 4322-4333. https://doi.org/10.1098/rspb.2012.1032
  27. Seviour, R. J., Mino, T., and Onuki, M. (2003). The Microbiology of Biological Phosphorus Removal in Activated Sludge Systems, FEMS microbiology reviews, 27(1), pp. 99-127. https://doi.org/10.1016/S0168-6445(03)00021-4
  28. Shi, J., Podola, B., and Melkonian, M. (2007). Removal of Nitrogen and Phosphorus from Wastewater Using Microalgae Immobilized on Twin Layers: An Experimental Study, Journal of Applied Phycology, 19(5), pp. 417-423. https://doi.org/10.1007/s10811-006-9148-1
  29. Sierra, E. Acien, F. G., Fernandez, J. L., Garcia, C., Gonzalez, C., and Molina, E. (2008). Characterization of a Flat Plate Photobioreactor for the Production of Microalgae, Chemical Engineering Journal, 138(1-3), pp. 136-147. https://doi.org/10.1016/j.cej.2007.06.004
  30. Singh, G. and Thomas, P. B. (2012). Nutrient Removal from Membrane Reactor Permeate Using Microalgae and in a Microalgae Membrane Reactor, Bioresource Technology, 117, pp. 80-85. https://doi.org/10.1016/j.biortech.2012.03.125
  31. Wang, C., Li, J., Wang, B., and Zhang, G. (2006). Development of an Empirical Model for Domestic Wastewater Treatment by Biological Aerated Filter, Process Biochemisrty, 41(4), pp. 778-782. https://doi.org/10.1016/j.procbio.2005.09.015
  32. Wang, C., Yu, X., Lv, H., and Yang, J. (2012). Nitrogen and Phosphorus Removal from Municipal Wastewater by Green Alga Chlorella sp., Journal of Environmental Biology, 34(2), pp. 421-425.
  33. Wijffels, R. H. and Barbosa, M. J. (2010). An Outlook on Microalgal Biofuels, Science, 329(5993), 796-799. https://doi.org/10.1126/science.1189003
  34. Woertz, I., Fulton, L., and Lundquist, T. (2009). Nutrient Removal and Greenhouse Gas Abatement with $CO_2$ Supplemented Algal High Rate Ponds. Water Environment Federation, October 12-14, Orlando, Florida.
  35. Wu, Z. and Shi, X. (2007). Optimization for High-Density Cultivation of Heterotrophic Chlorella Based on a Hybrid Neural Network Model, Letters in Applied Microbiology, 44(1), pp. 13-18. https://doi.org/10.1111/j.1472-765X.2006.02038.x

Cited by

  1. Application of Saccharified Acorn-starch for Biomass and Lipid Accumulation of Microalgae vol.32, pp.2, 2016, https://doi.org/10.15681/KSWE.2016.32.2.197