References
- Abbegglen, C., Ospelt, M., and Siegrist, H. (2008). Biological Nutrient Removal in a Small-Scale MBR Treating Household Wastewater, Water Research, 42(1-2), pp. 338-346. https://doi.org/10.1016/j.watres.2007.07.020
- Abdel-Raouf, N., Al-Homaidan, A. A., and Ibraheem, I. B. M. (2012). Microalgae and Wastewater Treatment, Saudi Journal of Biological Science, 19, pp. 257-275. https://doi.org/10.1016/j.sjbs.2012.04.005
- Adov, S. S., Lee, D. J., Show, K. Y., and Tay, J. H. (2008). Aerobic Granular Sludge: Recent Advances, Biotechnology Advances, 26(5), pp. 411-423. https://doi.org/10.1016/j.biotechadv.2008.05.002
- Ahn, C. Y., Lee, J. Y., and Oh, H. M. (2013). Control of Microalgal Growth and Competition by N:P Ratio Manipulation, Korean Journal of Environmental Biology, 31(2), pp. 61-68. [Korean Literature] https://doi.org/10.11626/KJEB.2013.31.2.061
- Boelee, N. C., Temmink, H., Janssen, M., Buisman, C. J. N., and Wijffels, R. H. (2012). Scenario Analysis of Nutrient Removal from Municipal Wastewater by Microalgae Biofilms, Water, 4, pp. 460-473. https://doi.org/10.3390/w4020460
- Boonchai, R., Seo, G. T., Park, D. R., and Seong, C. Y. (2012). Microalgae Photobioreactor for Nitrogen and Phosphorus Removal from Wastewater of Sewage Treatment Plant, International Journal of Bioscience, Biochemistry and Bioinformatics, 2(6), pp. 407-410.
- Borghei, S. M., Sharbatmaleki, M., Pourrezaie, P., and Borghei, G. (2008). Kinetic of Organic Removal in Fixed-Bed Aerobic Biological Reactor, Bioresouce Technology, 99(5), pp. 1118-1124. https://doi.org/10.1016/j.biortech.2007.02.037
- Chen, C. Y., Yeh, K. L., Aisyah, R., Lee, D. J., and Chang, J. S. (2011). Cultivation, Photobioreactor Design and Harvesting of Microalgae for Biodiesel Production: A critical review, Bioresource Technology, 102(1), pp. 71-81. https://doi.org/10.1016/j.biortech.2010.06.159
- Choi, H. J., Lee, A. H., and Lee, S. M. (2012). Comparison between a Moving Bed Bioreactor and a Fixed Bed Bioreactor for Biological Phosphate Removal and Denitrification, Water Science and Technology, 65(10), pp. 1834-1838. https://doi.org/10.2166/wst.2012.847
- Choi, H. J., Lee, J. M., and Lee, S. M. (2013). A Novel Optical Panel Photobiorector for Cultivation of Microalgae, Water Science and Technology, 67(11), pp. 2543-2548. https://doi.org/10.2166/wst.2013.128
- Choi, H. J. and Lee, S. M. (2011). Effect of Temperature, Light Intensity and pH on the Growth Rate of Chlorella vulgaris, Korean Society of Environmental Engineering, 33(7), pp. 511-515. [Korean Literature] https://doi.org/10.4491/KSEE.2011.33.7.511
- Choi, H. J. and Lee, S. M. (2012). Effect of Photobioreactor with Optical Panel on the Growth Rate of Chlorella vulgaris, Korean Society of Environmental Engineering, 34(7), pp. 467-472. [Korean Literature] https://doi.org/10.4491/KSEE.2012.34.7.467
- Choi, H. J. and Lee, S. M. (2014). Effect of Optical Panel Thickness for Nutrient Removal and Cultivation of Microalgae in the Photobioreactor, Bioprocess and Biosystems Engineering, 37(4), pp. 697-705. https://doi.org/10.1007/s00449-013-1039-7
- Colak, O. and Kaya, Z. (1988). A Study on the Possibilities of Biological Wastewater Treatment Using Algae, Doga: Turkish Journal of biology, 12(1), pp. 18-29.
- Grobbelaar, J. U. (2000). Physiological and Technological Considerations for Optimizing Mass Algal Cultures, Journal of Applied Phycology, 12(3-5), pp. 201-206. https://doi.org/10.1023/A:1008155125844
- Haag, A. L. (2007). Algae Bloom Again, Nature, 447(7144), pp. 520-521. https://doi.org/10.1038/447520a
- Hsieh, C. H. and Wu, W. T. (2009). A Novel Photpbioreactor with Transparent Rectangular Chambers for Cultivation of Microalgae, Biochemical Engineering Journal, 46(3), pp. 300-305. https://doi.org/10.1016/j.bej.2009.06.004
- Jin, E., Polle, J. E. W., Lee, H. K., Hyun, S. M., and Chang, M. (2003). Xanthophylls in Microalgae: From Biosynthesis to Biotechnological Mass Production and Application, Journal of Microbiology and Biotechnoogy, 13(2), pp. 165-174.
- Kang, Z., Kim, B. H., Shim, S. Y., Oh, H. M., and Kim, H. S. (2012). Municipal Wastewater Treatment and Microbial Diversity Analysis of Microalgal Mini Raceway Open Pond, The Korean Journal of Microbiology, 48(3), pp. 192-199. https://doi.org/10.7845/kjm.2012.036
- Klausmeier, C. A., Litchman, E., Daufresne, T., and Levin, S. A. (2008). Phytoplankton Stoichiometry, Ecological Research, 23, pp. 479-485. https://doi.org/10.1007/s11284-008-0470-8
- Klausmeier, C. A., Litchman, E., and Simon, A. L. (2004). Phytoplankton Growth and Stoichiometry under Multiple Nutrient Limitations, Limnology and Oceanography, 49(4), pp. 1463-1470. https://doi.org/10.4319/lo.2004.49.4_part_2.1463
- Masojidek, J. and Torzillo, G. (2008). Mass Cultivation of Freshwater Microalgae; In Encyclopedia of Ecology, Academic Press, Oxford, UK, pp. 2226-2235.
- Moreno-Garrido, I. (2008). Microalgae Immobilization: Current Techniques and Uses, Bioresource Technology, 99(10), pp. 3949-3964. https://doi.org/10.1016/j.biortech.2007.05.040
- Ogbonna, J. C. and Tanaka, H. (2000). Light Requirement and Photosynthetic Cell Cultivation-Development of Processes for Efficient Light Utilization in Photobioreactors, Journal of Applied Phycology, 12(3-5), pp. 207-218. https://doi.org/10.1023/A:1008194627239
- Rusten, B., Eikebrokk, B., and Ulgenes, Y. (2006). Design and Operations of The Kindness Moving Bed Biofilm Reactors, Aquacultural Engineering, 34(3), pp. 322-331. https://doi.org/10.1016/j.aquaeng.2005.04.002
- Schindler, D. W. (2012). The Dilemma of Controlling Cultural Eutrophication of Lake, Proceedings of the Royal Society B; Biological Sciences, 279 (1746), pp. 4322-4333. https://doi.org/10.1098/rspb.2012.1032
- Seviour, R. J., Mino, T., and Onuki, M. (2003). The Microbiology of Biological Phosphorus Removal in Activated Sludge Systems, FEMS microbiology reviews, 27(1), pp. 99-127. https://doi.org/10.1016/S0168-6445(03)00021-4
- Shi, J., Podola, B., and Melkonian, M. (2007). Removal of Nitrogen and Phosphorus from Wastewater Using Microalgae Immobilized on Twin Layers: An Experimental Study, Journal of Applied Phycology, 19(5), pp. 417-423. https://doi.org/10.1007/s10811-006-9148-1
- Sierra, E. Acien, F. G., Fernandez, J. L., Garcia, C., Gonzalez, C., and Molina, E. (2008). Characterization of a Flat Plate Photobioreactor for the Production of Microalgae, Chemical Engineering Journal, 138(1-3), pp. 136-147. https://doi.org/10.1016/j.cej.2007.06.004
- Singh, G. and Thomas, P. B. (2012). Nutrient Removal from Membrane Reactor Permeate Using Microalgae and in a Microalgae Membrane Reactor, Bioresource Technology, 117, pp. 80-85. https://doi.org/10.1016/j.biortech.2012.03.125
- Wang, C., Li, J., Wang, B., and Zhang, G. (2006). Development of an Empirical Model for Domestic Wastewater Treatment by Biological Aerated Filter, Process Biochemisrty, 41(4), pp. 778-782. https://doi.org/10.1016/j.procbio.2005.09.015
- Wang, C., Yu, X., Lv, H., and Yang, J. (2012). Nitrogen and Phosphorus Removal from Municipal Wastewater by Green Alga Chlorella sp., Journal of Environmental Biology, 34(2), pp. 421-425.
- Wijffels, R. H. and Barbosa, M. J. (2010). An Outlook on Microalgal Biofuels, Science, 329(5993), 796-799. https://doi.org/10.1126/science.1189003
-
Woertz, I., Fulton, L., and Lundquist, T. (2009). Nutrient Removal and Greenhouse Gas Abatement with
$CO_2$ Supplemented Algal High Rate Ponds. Water Environment Federation, October 12-14, Orlando, Florida. - Wu, Z. and Shi, X. (2007). Optimization for High-Density Cultivation of Heterotrophic Chlorella Based on a Hybrid Neural Network Model, Letters in Applied Microbiology, 44(1), pp. 13-18. https://doi.org/10.1111/j.1472-765X.2006.02038.x
Cited by
- Application of Saccharified Acorn-starch for Biomass and Lipid Accumulation of Microalgae vol.32, pp.2, 2016, https://doi.org/10.15681/KSWE.2016.32.2.197