• Title/Summary/Keyword: membrane fusion

Search Result 237, Processing Time 0.02 seconds

Catalytic Membrane Reactor for Dehydrogenation of Water Via gas-Shift: A Review of the Activities for the Fusion Reactor Fuel Cycle

  • Tosti, Silvano;Rizzello, Claudio;Castelli, Stefano;Violante, Vittorio
    • Korean Membrane Journal
    • /
    • v.1 no.1
    • /
    • pp.1-7
    • /
    • 1999
  • Pd-ceramic composite membranes and catalytic membrane reactors(CMR) have been studied for hydrogen and its isotopes (deuterium and tritium) purification and recovery in the fusion reactor fuel cycle. Particularly a closed-loop process has been studied for recovering tritium from tritiated water by means of a CMR in which the water gas shift reaction takes place. The development of the techniques for coating micro-porous ceramic tubes with Pd and Pd/Ag thin layers is described : P composite membranes have been produced by electroless deposition (Pd/Ag film of 10-20 $\mu$m) and rolling of thin metal sheets (Pd and Pd/Ag membranes of 50-70 $\mu$m). Experimental results of the electroless membranes have shown a not complete hydrogen selectivity because of the presence of some defects(micro-holes) in the metallic thin layer. Conversely the rolled thin Pd and Pd/ag membranes have separated hydrogen from the other gases with a complete selectivity giving rise to a slightly larger (about a factor 1.7) mass transfer resistance with respect to the electroless membranes. Experimental tests have confirmed the good performances of the rolled membranes in terms of chemical stability over several weeks of operation. Therefore these rolled membranes and CMR are adequate for applications in the fusion reactor fuel cycle as well as in the industrial processes where high pure hydrogen is required (i.e. hydrocarbon reforming for fuel cell)

  • PDF

Synthesis and Characterization of Phosphoric Acid-doped Poly (2,5-benzimidazole) Membrane for High Temperature Polymer Electrolyte Membrane Fuel Cells (고온 고분자 연료전지용 인산 도핑 폴리(2,5-벤지이미다졸) 막의 제조 및 특성)

  • Nguyen, Thi Xuan Hien;Mishra, Ananta Kumar;Choi, Ji-Sun;Kim, Nam-Hoon;Lee, Joong-Hee
    • Journal of Hydrogen and New Energy
    • /
    • v.23 no.1
    • /
    • pp.26-33
    • /
    • 2012
  • Phosphoric acid-doped poly (2,5-benzimidazole) (DABPBI) was prepared by condensation polymerization of 3,4-diaminobenzoic acid for high temperature proton electrolyte membrane fuel cells. The membranes were casted directly using a hot-press unit and characterized by fourier transform infrared spectroscopy, thermogravimetric analysis, conductivity measurement, scanning electron microscopy and tensile test. The proton conductivities of DABPBI are observed to be 0.062 and 0.018 $S{\cdot}cm^{-1}$ under 30 and 1% relative humidity, respectively at a temperature of $120^{\circ}C$ which is appreciably higher than that of Nafion 115 under similar conditions. The DABPBI membrane has demonstrated excellent thermo- mechanical properties and proton conductivity suggesting its suitability as a high temperature membrane.

Controlled Release of Nifedipine in Multi-layered Granule System (다중층 과립 시스템에서 니페디핀의 방출 제어)

  • Lee, Soo-Young;Youn, Ju-Yong;Kim, Byung-Soo;Kim, Moon-Suk;Lee, Bong;Khang, Gil-Son;Lee, Hai-Bang
    • Journal of Pharmaceutical Investigation
    • /
    • v.37 no.4
    • /
    • pp.229-235
    • /
    • 2007
  • Multi-layered granules were prepared by a fluidized-bed coater and uniformed granules were obtained with a size range between $950{\sim}1000{\mu}m$ in diameter. The granule system was composed of three layers, i.e. seed layer with sugar sphere bead and a water-swellable polymer, middle layer with a drug, solubilizer and polymer, and the top layer of porous membrane with a polymeric binder. The aim of this work is to find out the dependence of a drug dissolution rate on the amount of a water-soluble binder and a solubilizer in the granule system. The results showed that the higher amount of hydrophilic binder in the porous membrane, gave the bigger pore size and porosity and made faster dissolution rate and also the higher amount of solubilizer in drug layer enhanced the dissolution rate of drug.

The Effect of Drug Release from Osmotic Pellet Related to the Various Ratio of $Eudragit^{(R)}$ RL and RS ($Eudragit^{(R)}$ RL과 RS의 비에 따른 삼투정 펠렛의 약물방출에 미치는 영향)

  • Youn, Ju-Yong;Ku, Jeong;Lee, Soo-Young;Kim, Byung-Soo;Kim, Moon-Suk;Lee, Bong;Khang, Gil-Son;Lee, Hai-Bang
    • Polymer(Korea)
    • /
    • v.31 no.4
    • /
    • pp.329-334
    • /
    • 2007
  • Osmotic pellet system, which is one of the oral drug delivery systems, has been developed to improve manufacturing process, reduce product cost and other problems of osmotic tablet systems. Osmotic pellet is consisted of water swellable seed layer, drug layer, and membrane layer. Among them, the membrane layer plays an important role in a control of the drug release. In this work, we examined the effect of ratio for Eudragit RL and RS on the drug release behavior. Osmotic pellet with nifedipine as a model drug was easily obtained in a good yield by fluidized bed coater. Osmotic pellet showed round morphology with a range of size $1300{\sim}1500\;{\mu}m$. In the experiment of nifedipine release, the release amount increased with the increase of the ratio of Eudragit. This is due to the fact that Eudragit RL contains more hydrophilic quaternary ammonium group than Eudragit RS. Additionally, the release amount was retarded with increasing the membrane thickness. There are no differences in the release amount measured at the different pH 1.2, 6.5, 6.8, and 7.2. In conclusion, it was found that the drug release from osmotic pellets depended on the composition ratio and coating thickness of membrane layer.

Expression and Purification of a Cathelicidin-Derived Antimicrobial Peptide, CRAMP

  • Park Eu-Jin;Chae Young-Kee;Lee Jee-Young;Lee Byoung-Jae;Kim Yang-Mee
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.9
    • /
    • pp.1429-1433
    • /
    • 2006
  • Application of recombinant protein production and particularly their isotopic enrichment has stimulated development of a range of novel multidimensional heteronuclear NMR techniques. Peptides in most cases are amenable to assignment and structure determination without the need for isotopic labeling. However, there are many cases where the availability of $^{15}N$ and/or $^{13}C$ labeled peptides is useful to study the structure of peptides with more than 30 residues and the interaction between peptides and membrane. CRAMP (Cathelicidin-Related AntiMicrobial Peptide) was identified from a cDNA clone derived from mouse femoral marrow cells as a member of cathelicidin-derived antimicrobial peptides. CRAMP was successfully expressed as a GST-fused form in E. coli and purified using affinity chromatography and reverse-phase chromatography. The yield of the CRAMP was 1.5 mg/l 1. According to CD spectra, CRAMP adopted ${\alpha}$-helical conformation in membrane-mimetic environments. Isotope labeling of CRAMP is expected to make it possible to study the structure and dynamic properties of CRAMP in various membrane systems.

Prion Protein Does Not Interfere with SNARE Complex Formation and Membrane Fusion

  • Yang, Yoo-Soo;Shin, Jae-Il;Shin, Jae-Yoon;Oh, Jung-Mi;Lee, Sang-Ho;Yang, Joo-Sung;Kweon, Dae-Hyuk
    • Food Science and Biotechnology
    • /
    • v.18 no.3
    • /
    • pp.782-787
    • /
    • 2009
  • In prion disease, spongiform neurodegeneration is preceded by earlier synaptic dysfunction. There is evidence that soluble N-ethylmaleimide sensitive factor attachment receptor (SNARE) complex formation is reduced in scrapie-infected in vivo models, which might explain this synaptic dysfunction because SNARE complex plays a crucial role in neuroexocytosis. In the present study, however, it is shown that prion protein (PrP) does not interfere with SNARE complex formation of 3 SNARE proteins: syntaxin 1a, SNAP-25, and synaptobrevin. Sodium dodecyl sulfate-resistant complex formation, SNAREdriven membrane fusion, and neuroexocytosis of PC12 cells were not altered by PrP. Thus, PrP does not alter synaptic function by directly interfering with SNARE complex formation.

Development of a Peristaltic Micropump with Lightweight Piezo-Composite Actuator Membrane Valves

  • Pham, My;Goo, Nam-Seo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.12 no.1
    • /
    • pp.69-77
    • /
    • 2011
  • A peristaltic micropump with lightweight piezo-composite actuator (LIPCA) membrane valves is presented. The micropump contained three cylinder chambers that were connected by microchannels and two active membrane valves. A circular miniature LIPCA was developed and manufactured to be used as actuating diaphragms. The LIPCA diaphragm acted as an active membrane valve that alternate between open and closed positions at the inlet and outlet in order to produce high pumping pressure. In this LIPCA, a lead zirconium titanate ceramic with a thickness of 0.1 mm was used as an active layer. The results confirmed that the actuator produced a large out-of-plane deflection. During the design process, a coupled field analysis was conducted in order to predict the actuating behavior of the LIPCA diaphragm; the behavior of the actuator was investigated from both a theoretical and experimental perspective. The active membrane valve concept was introduced as a means for increasing pumping pressure, and microelectromechanical system techniques were used to fabricate the peristaltic micropump. The pumping performance was analyzed experimentally in terms of the flow rate, pumping pressure and power consumption.

C-terminal Truncation Mutant of the Human ${\beta}_2$-adrenergic Receptor Expressed in E. coli as a Fusion Protein Retains Ligand Binding Affinity

  • Shin, Jin-Chul;Lee, Sang-Derk;Shin, Chan-Young;Lee, Sang-Bong;Ko, Kwang-Ho
    • Biomolecules & Therapeutics
    • /
    • v.4 no.1
    • /
    • pp.97-102
    • /
    • 1996
  • To investigate whether human $\beta$$_2$-adrenergic receptor devoid of the C-terminal two transmembrane helices retain its ligand binding activity and specificity, 5'780-bp DNA fragment of the receptor gene which encodes amino acid 1-260 of human $\beta$$_2$-adrenergic receptor was subcloned into the bacterial fusion protein expression vector and expressed as a form of glutathione-S-transferase (GST) fusion protein in E. coli DH5$\alpha$. The receptor fusion protein was expressed as a membrane bound form which was verified by SDS-PAGE and Western blot. The fusion protein expressed in this study specifically bound $\beta$-adrenergic receptor ligand [$^3$H] Dihydroalprenolol. In saturation ligand binding assay, the $K_{d}$ value was 7.6 nM which was similar to that of intact $\beta$$_2$-adrenergic receptor in normal animal tissue ( $K_{d}$=1~2 nM) and the $B_{max}$ value was 266 fmol/mg membrane protein. In competition binding assay, the order of binding affinity of various adrenergic receptor agonists to the fusion protein was isoproterenol》epinephrine norepinephrine, which was similar to that of intact receptor in normal animal tissue. These results suggest that N-terminal five transmembrane helices of the $\beta$$_2$-adrenergic receptor be sufficient to determine the ligand binding activity and specificity, irrespective of the presence or absence of the C-terminal two transmembrane helices.s.s.s.

  • PDF

Inhibition of Myoblast Differentiation by Polyamine Depletion with Methylglyoxal Bis(guanylhydrazone)

  • Cho, Hwa-Jeong;Kim, Byeong-Gee;Kim, Han-Do;Kang, Ho-Sung;Kim, Chong-Rak
    • BMB Reports
    • /
    • v.28 no.3
    • /
    • pp.191-196
    • /
    • 1995
  • The role of polyamines in skeletal myoblast differentiation was investigated using the polyamine metabolic inhibitor methylglyoxal bis(guanylhydrazone)(MGBG). Concentrations of intracellular free spermidine and spermine increased 2 to 2.5-fold at the onset of myoblast fusion. The systhesis of actin, and creatine kinase activity both dramatically increased during myotube formation. However, MGBG at a concentration of 0.5 mM not only abolished the increase of intracellular free polyamines, but also reduced cell fusion to almost half the level of untreated cells, without noticeable morphological alteration. The production of actin, and creatine kinase activity were almost completely abolished by MGBG. The inhibition of myoblast fusion by MGBG was partially recovered with 0.1 mM of spermidine or spermine added externally. Results indicate that polyamines are necessary for normal myoblast differentiation. Since the first indication of myoblast differentiation is alignment of muscle cells and membrane fusion of adjacent cells, and since polyamine depletion completely inhibited the synthesis of actin, which might be associted with membranes, polyamine might be involved in myoblast differentiation through membrane reorganization events.

  • PDF