• Title/Summary/Keyword: membrane fraction

Search Result 371, Processing Time 0.021 seconds

Effect of Bovine Colostral Whey Fraction containing Insulin-like Growth Factor on Cell Proliferation (젖소 초유 중의 Insulin-like Growth Factor-1 함유 분획이 세포 성장에 미치는 영향)

  • 황경아;양희진;하월규;이수원
    • Food Science of Animal Resources
    • /
    • v.24 no.2
    • /
    • pp.171-175
    • /
    • 2004
  • Insulin-like growth factor-I (IGF-I) rich fraction, which was obtained molecules ranged between 30 kDa and 1 kDa, was fractionated by ultrafiltration from bovine colostral whey with 30 kDa and 1 kDa membrane. IGF-I included in fractionated IGF-I rich fraction was confirmed by SDS-PAGE and western blotting and then the quantity of IGF-I was measured by ELISA. IGF-I concentration in IGF-I rich fraction was 10ng/mg protein. Effect of IGF-I rich fraction on in vitro proliferation of several cells was tested. IEC-6 cell proliferation rate was increased 60%. 53%, 30%, and 20% at l0ng, 1ng, 0.1ng and IGF-I of IGF-I, respectively, compared to control group which was not supplemented by IGF-I rich fraction. IGF-I rich fraction stimulated in vitro proliferation of IEC-6 cell in a dose dependent manner by increasing cell number. Detroit 551 cell proliferation was enhanced 56% and 26% at 10ng and 1ng level of IGF-I, respectively, compared to control group. EL-4 cell and L6 cell proliferation was increased 53% and 46% at 10ng of IGF-I, respectively, compared to control group.

SIMULATION OF UNIT CELL PERFORMANCE IN THE POLYMER ELECTROLYTE MEMBRANE FUEL CELL

  • Kim, H.G.;Kim, Y.S.;Shu, Z.
    • International Journal of Automotive Technology
    • /
    • v.7 no.7
    • /
    • pp.867-872
    • /
    • 2006
  • Fuel cells are devices that convert chemical energy directly into electrical energy. Owing to the high efficiency of the fuel cells, a large number of research work have been done during these years. Among many kinds of the fuel cells, a polymer electrolyte membrane fuel cell is such kind of thing which works under low temperature. Because of the specialty, it stimulated intense global R&D competition. Most of the major world automakers are racing to develop polymer electrolyte membrane fuel cell passenger vehicles. Unfortunately, there are still many problems to be solved in order to make them into the commercial use, such as the thermal and water management in working process of PEMFCs. To solve the difficulites facing the researcher, the analysis of the inner mechanism of PEMFC should be implemented as much as possible and mathematical modeling is an important tool for the research of the fuel cell especially with the combination of experiment. By regarding some of the assumptions and simplifications, using the finite element technique, a two-dimensional electrochemical mode is presented in this paper for the further comparison with experimental data. Based on the principals of the problem, the equations of electronic charge conservation equation, gas-phase continuity equation, and mass balance equation are used in calculating. Finally, modeling results indicate some of the phenomenon in a unit cell, and the relationships between potential and current density.

Membrane-Associated Hexavalent Chromium Reductase of Bacillus megaterium TKW3 with Induced Expression

  • Cheung K.H.;Lai H.Y.;Gu Ji-Dong
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.6
    • /
    • pp.855-862
    • /
    • 2006
  • Hexavalent chromium ($Cr^{6+}$) is a highly harmful pollutant, which can be detoxified and precipitated through reduction to $Cr^{3+}$. Bacillus megaterium TKW3 previously isolated from chromium-contaminated marine sediments was capable of reducing $Cr^{6+}$ in concomitance with metalloids ($Se^{4+}$, $Se^{6+}$, and $As^{5+}$). Notwithstanding approximately 50% inhibition, it was the first report of simultaneous bacterial reduction of $Cr^{6+}$ and $Se^{4+}$ (to elemental Se). No significant difference was observed among electron donors (glucose, maltose, and mannitol) on $Cr^{6+}$ reduction by B. megaterium TKW3. The reduction was constitutive and determined to be non-plasmid mediated. Peptide mass fingerprints (PMF) revealed a novel aerobic membrane-associated reductase with $Cr^{6+}$-induced expression and specific reductive activity (in nmol $Cr^{6+}$/mg protein/min) of 0.220 as compared with 0.087 of the soluble protein fraction. Respiratory inhibitor $NaN_3$ did not interfere with the reductase activity. Transmission electron microscopy with energy dispersive X-ray (TEM-EDX) analysis confirmed the aggregation of reduced chromium along the intracellular membrane region. Future identification of the N-terminal amino acid sequence of this reductase will facilitate purification and understanding of its enzymatic action.

경구투여 백신 후보물질로서의 Helicobacter pylori 외막 단백질의 조사

  • 박형배;최태부
    • Microbiology and Biotechnology Letters
    • /
    • v.25 no.2
    • /
    • pp.129-136
    • /
    • 1997
  • Helicobacter pylori is a spiral-shaped, microaerophilic human gastric pathogen causing chronic-active gastritis in association with duodenal ulcer and gastric cancer. To investigate the possibility of H. pylori outer membrane proteins (OMPS) as the oral vaccine antigens, sarcosine-insoluble outer membrane fraction has been prepared from H. pylori NCTC 11637. The major OMPs having apparent molecular masses of 62 kDa, 54 kDa and 33 kDa were detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), which were identified as urease B subunit (UreB), heat shock protein (Hsp54 kDa) and urease A subunit (UreA), respectively. Minor protein bands of 57 kDa, 52 kDa, 40 kDa, 36 kDa and 31 kDa were also observed. The antigenicity of H. pylori OMPs and antigenic cross-reactivity among the strains were determined by immunoblot analysis using anti-H. pylori OMPs antisera or intestinal lavage solutions. The results showed that UreB, Hsp54 kDa, UreA and 40 kDa proteins vigorously stimulated mucosal immune response rather than systemic immunity. From this results, these proteins seemed to be useful as the antigen candidates for the oral vaccine. The immunoblotting results with surface proteins from eight isolated H. pylori strains were similar to that of H. pylori NCTC 11637. The IgA which had been arised from oral administration of H. pylori OMPs, was able to bind H. pylori whole-cells.

  • PDF

Cytomegalovirus Myocarditis Required Extracorporeal Membrane Oxygenation Support Followed by Ganciclovir Treatment in Infant

  • Kim, Bong Jun;Jung, Jo Won;Shin, Yu Rim;Park, Han Ki;Park, Young Hwan;Shin, Hong Ju
    • Journal of Chest Surgery
    • /
    • v.49 no.3
    • /
    • pp.199-202
    • /
    • 2016
  • A 7-month-old girl with no medical history was treated with mechanical circulatory support due to myocarditis. Her cardiac contractility did not improve despite more than one week of extracorporeal membrane oxygenation treatment. Thus, we planned a heart transplant. However, a high level of cytomegalovirus was found in blood laboratory results by quantitative polymerase chain reaction. The patient's heart contractility recovered to normal range four days after ganciclovir treatment. She was discharged with slightly decreased cardiac contractility with a left ventricular ejection fraction of 45%.

Characterization of Membrane-bound Nitrate Reductase from Denitrifying Bacteria Ochrobactrum anthropi SY509

  • Kim Seung-Hwan;Song Seung-Hoon;Yoo Young-Je
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.1
    • /
    • pp.32-37
    • /
    • 2006
  • In this study, we have purified and characterized the membrane bound nitrate reductase obtained from the denitrifying bacteria, Ochrobactrum anthropi SY509, which was isolated from soil samples. O. anthropi SY509 can grow in minimal medium using nitrate as a nitrogen source. We achieved an overall purification rate of 15-fold from the protein extracted from the membrane fraction, with a recovery of approximately 12% of activity. The enzyme exhibited its highest level of activity at pH 5.5, and the activity was increased up to $70^{\circ}C$. Periplasmic and cytochromic proteins, including nitrite and nitrous oxide reductase, were excluded during centrifugation and were verified using enzyme essay. Reduced methyl viologen was determined to be the most efficient electron donor among a variety of anionic and cationic dyestuffs, which could be also used as an electron donor with dimethyl dithionite. The effects of purification and storage conditions on the stability of enzyme were also investigated. The activity of the membranebound nitrate reductase was stably maintained for over 2 weeks in solution. To maintain the stability of enzyme, the cell was disrupted using sonication at low temperatures, and enzyme was extracted by hot water without any surfactant. The purified enzyme was stored in solution with no salt to prevent any significant losses in activity levels.

Surface Display of Organophosphorus Hydrolase on E. coli Using N-Terminal Domain of Ice Nucleation Protein InaV

  • Khodi, Samaneh;Latifi, Ali Mohammad;Saadati, Mojtaba;Mirzaei, Morteza;Aghamollaei, Hossein
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.2
    • /
    • pp.234-238
    • /
    • 2012
  • Recombinant Escherichia coli displaying organophosphorus hydrolase (OPH) was used to overcome the diffusion barrier limitation of organophosphorus pesticides. A new anchor system derived from the N-terminal domain of ice-nucleation protein from Pseudomonas syringae InaV (InaV-N) was used to display OPH onto the surface. The designed sequence was cloned in the vector pET-28a(+) and then was expressed in E. coli. Tracing of the expression location of the recombinant protein using SDS-PAGE showed the presentation of OPH by InaV-N on the outer membrane, and the ability of recombinant E. coli to utilize diazinon as the sole source of energy, without growth inhibition, indicated its significant activity. The location of OPH was detected by comparing the activity of the outer membrane fraction with the inner membrane and cytoplasm fractions. Studies revealed that recombinant E. coli can degrade 50% of 2 mM chlorpyrifos in 2 min. It can be concluded that InaV-N can be used efficiently to display foreign functional protein, and these results highlight the high potential of an engineered bacterium to be used in bioremediation of pesticide-contaminated sources in the environment.

Effects of Chrysanthemum coronarium L. on the Thermotropic Behavior of DPPC Liposomal Membrane

  • Bae, Song-Ja;Noh, Ok-Jeong;Roh, Sung-Bae
    • Journal of Life Science
    • /
    • v.10 no.2
    • /
    • pp.27-32
    • /
    • 2000
  • To understand the effects of the fraction from Chrysanthemum coronarium L. (CC), we prepared five different types of samples, denoted here as CCMM, CCMH, CCMEA, CCMB and CCMA. We studied the effects of these samples on the phase transition of liposomal membranes by high-sensitivity differential scanning calorimetry (nano-DSC). We used dipalmitoylphosphatidylcholine (DPPC) bilayers which make most stable liposomes among the other phosphatidylcholines. When the samples were added to the bilayers, the phase transition temperatures of DPPC liposomes incorporated with CCMH and CCMEA were decreased by 1.5 and 2^{\circ}C$, while the other three fractions showed less tendencies. The CCMH and CCMEA fractions markedly affected the thermotropic properties of DPPC liposomes, broadened and shifted the thermograms of DSC. It also significantly reduced the size of cooperative unit of the transition. In all cases, there was no change in enthalpy of transition within the concentration range of the CC fractions studied. We concluded that the incorporation of the CCMH and CCMEA into DPPC liposomes was preferentially located in the hydrophobic core of DPPC bilayers compared to the other three fractions CCMM, CCMB and CCMA. These results suggest that certain substances in CCMH and CCMEA fractions might have biologically significant effects on the fluidity of biological membrane.

  • PDF

Freeze-dried bovine amniotic membrane as a cell delivery scaffold in a porcine model of radiation-induced chronic wounds

  • Oh, Daemyung;Son, Daegu;Kim, Jinhee;Kwon, Sun-Young
    • Archives of Plastic Surgery
    • /
    • v.48 no.4
    • /
    • pp.448-456
    • /
    • 2021
  • Background Locoregional stem cell delivery is very important for increasing the efficiency of cell therapy. Amnisite BA (Amnisite) is a freeze-dried amniotic membrane harvested from bovine placenta. The objective of this study was to investigate the retention of cells of the stromal vascular fraction (SVF) on Amnisite and to determine the effects of cell-loaded Amnisite in a porcine radiation-induced chronic wound model. Methods Initially, experiments were conducted to find the most suitable hydration and incubation conditions for the attachment of SVF cells extracted from pig fat to Amnisite. Before seeding, SVFs were labeled with PKH67. The SVF cell-loaded Amnisite (group S), Amnisite only (group A), and polyurethane foam (group C) were applied to treat radiation-induced chronic wounds in a porcine model. Biopsy was performed at 10, 14, and 21 days post-operation for histological analysis. Results Retaining the SVF on Amnisite required 30 minutes for hydration and 1 hour for incubation. A PKH67 fluorescence study showed that Amnisite successfully delivered the SVF to the wounds. In histological analysis, group S showed increased re-epithelialization and revascularization with decreased inflammation at 10 days post-operation. Conclusions SVFs had acceptable adherence on hydrated Amnisite, with successful cell delivery to a radiation-induced chronic wound model.

Comparison of Polymer Electrolyte Membrane Fuel Cell performance obtained by 1D and CFD simulations (1D와 CFD(Computational fluid dynamic) 시뮬레이션을 통한 PEMFC(Polymer Electrolyte Membrane Fuel Cell) 성능 비교)

  • Wonwoo Jeon;Sehyeon An;Jaewan Yang;Jiwon Lee;Hyunbin jo;Eunseop Yeom
    • Journal of the Korean Society of Visualization
    • /
    • v.21 no.3
    • /
    • pp.49-56
    • /
    • 2023
  • The Polymer electrolyte membrane fuel cell (PEMFC) operates at ambient temperature as a low-temperature fuel cell. During its operation, voltage losses arise due to factors such as operating conditions and material properties, effecting its performance. Computational simulations of fuel cells can be categorized into 1D simulation and CFD, chosen based on their specific application purposes. In this study, we carried out an analysis validation using 1D geometry and compared its performance with the results from 2D geometry analysis. CFD allows for the representation of pressure, velocity distribution, and fuel mass fraction according to the geometry, enabling the analysis of current density. However, the 1D simulation, simplifying governing equations to reduce time cost, failed to accurately account for fuel distribution and changes in fuel concentration due to fuel cell operations. As a result, it showed unrealistic results in the cell voltage region dominated by concentration loss compared to CFD.