• Title/Summary/Keyword: membrane deformation model

Search Result 42, Processing Time 0.027 seconds

Structural and Flow Analysis for Designing Air Plate of a Fuel Cell (구조 해석과 유동 해석을 통한 연료전지 공기판 설계)

  • Park, Jung-Sun;Yang, Ji-Hae;Lee, Won-Yong
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.585-590
    • /
    • 2003
  • The distributions of mass flow rate and pressure are major factors to deside the performance of a proton exchange membrane fuel cell (PEMFC). These factors are affected by channel configuration of air plate. In this paper. structural analysis is performed to investigate deformation of porous media. Two kind of models are suggest for flow analyses. Deformed porous media and undeformed porous media are considered for air plate model. The Numerical flow analysis results with deformed porous media and undeformed porous media had some discrepancy in pressure distribution. The pressure and velocity in a working condition are numerically calculated to predict the performance of the air plates. Distributions of the parameters in the PEMFC are analyzed numerically under steady-state conditions.

  • PDF

Numerical and Exprimental Study of the Air Plate in a Fuel Cell Considering Structural Deformation (연료전지 공기판의 구조적 변형을 고려한 유동 해석과 실험)

  • Yang, Ji-Hae;Hahn, Oh-Hyun;Park, Jung-Sun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.5
    • /
    • pp.41-49
    • /
    • 2004
  • The porous media of a proton exchange membrane fuel cell (PEMFC) is made of deformable materials. The shape of cross sectional area in air plate channels has been changed by structural deformation of the porous media. The uniform mass flow rate and pressure are major factors for safe and efficient operation in the PEMFC. Two kinds of models are provided for the flow analyses. Deformable and undeformable porous media are considered for numerical analysis and experiment of the air plate model. The numerical flow analysis results with deformable and undeformable porous media has some discrepancy in pressure distribution. The pressure differences are measured in order to compare with numerical analysis results. Pressures are measured between inlet and outlet of the air plate. The numerical analysis and experimental results show similar pressure distribution. It is shown that the pressure drops in the two approaches are well matched each other. It is proven that the consideration of structural deformation is required in the numerical analysis/experiment for the PEMFC design.

The Immunosuppressive Potential of Cholesterol Sulfate Through T Cell Microvilli Disruption

  • Jeong-Su Park;Ik-Joo Chung;Hye-Ran Kim;Chang-Duk Jun
    • IMMUNE NETWORK
    • /
    • v.23 no.3
    • /
    • pp.29.1-29.23
    • /
    • 2023
  • Cholesterol (CL) is required for various biomolecular production processes, including those of cell membrane components. Therefore, to meet these needs, CL is converted into various derivatives. Among these derivatives is cholesterol sulfate (CS), a naturally produced CL derivative by the sulfotransferase family 2B1 (SULT2B1), which is widely present in human plasma. CS is involved in cell membrane stabilization, blood clotting, keratinocyte differentiation, and TCR nanocluster deformation. This study shows that treatment of T cells with CS resulted in the decreased surface expression of some surface T-cell proteins and reduced IL-2 release. Furthermore, T cells treated with CS significantly reduced lipid raft contents and membrane CLs. Surprisingly, using the electron microscope, we also observed that CS led to the disruption of T-cell microvilli, releasing small microvilli particles containing TCRs and other microvillar proteins. However, in vivo, T cells with CS showed aberrant migration to high endothelial venules and limited infiltrating splenic T-cell zones compared with the untreated T cells. Additionally, we observed significant alleviation of atopic dermatitis in mice injected with CS in the animal model. Based on these results, we conclude that CS is an immunosuppressive natural lipid that impairs TCR signaling by disrupting microvillar function in T cells, suggesting its usefulness as a therapeutic agent for alleviating T-cell-mediated hypersensitivity and a potential target for treating autoimmune diseases.

Nonlinear Contact Analysis of the Air Plate in a Fuel Cell (연료전지 공기판의 비선형 접촉 해석)

  • Park, Jung-Sun;Yang, Ji-Hae;Im, Jong-Bin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.3
    • /
    • pp.22-29
    • /
    • 2004
  • Deformation of the porous media has influence on performance of a proton exchange membrane fuel cell (PEMFC). The stress distributions and deformation of the porous media are major factors for safe and efficient operation in the PEMFC. In this paper, nonlinear contact analysis of air plate and porous media is performed under a working condition to predict the performance characteristics of the air plates. Two kinds of models are suggested for this study. The first porous media model has nonlinear material properties. The second model has nonlinear material properties with contact condition between porous media and air plate. The numerical analysis results of the two models are somewhat different. It is shown that the nonlinear contact analysis is required for the design study of the PEMFC.

Influence of end fixity on post-yield behaviors of a tubular member

  • Cho, Kyu Nam
    • Structural Engineering and Mechanics
    • /
    • v.13 no.5
    • /
    • pp.557-568
    • /
    • 2002
  • For the evaluation of the capability of a tubular member of an offshore structure to absorb the collision energy, a simple method can be employed for the collision analysis without performing the detailed analysis. The most common simple method is the rigid-plastic method. However, in this method any characteristics for horizontal movement and rotation at the ends of the corresponding tubular member are not included. In a real structural system of an offshore structure, tubular members sustain a certain degree of elastic support from the adjacent structure. End fixity has influences in the behaviors of a tubular member. Three-dimensional FEM analysis can include the effect of end fixity fully, however in viewpoints of the inherent computational complexities of the 3-D approach, this is not the recommendable analysis at the initial design stage. In this paper, influence of end fixity on the behaviors of a tubular member is investigated, through a new approach and other approaches. A new analysis approach that includes the flexibility of the boundary points of the member is developed here. The flexibility at the ends of a tubular element is extracted using the rational reduction of the modeling characteristics. The property reduction is based on the static condensation of the related global stiffness matrix of a model to end nodal points of the tubular element. The load-displacement relation at the collision point of the tubular member with and without the end flexibility is obtained and compared. The new method lies between the rigid-plastic method and the 3-demensional analysis. It is self-evident that the rigid-plastic method gives high strengthening membrane effect of the member during global deformation, resulting in a steeper slope than the present method. On the while, full 3-D analysis gives less strengthening membrane effect on the member, resulting in a slow going load-displacement curve. Comparison of the load-displacement curves by the new approach with those by conventional methods gives the figures of the influence of end fixity on post-yielding behaviors of the relevant tubular member. One of the main contributions of this investigation is the development of an analytical rational procedure to figure out the post-yielding behaviors of a tubular member in offshore structures.

Nonlinear Fracture Finite Element Model of Reinforced Concrete Plates (철근콘크리트판의 비선형 파괴 유한요소 모델에 관한 연구)

  • Jin, Chi Sub;Cha, Young Soo;Eom, Jong Uk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.8 no.3
    • /
    • pp.11-20
    • /
    • 1988
  • A general finite element method is developed to analyze reinforced concrete plates under dead loads and monotonically increasing live loads. This method can be used to trace the load-deformation response and crack propagation through elastic, inelastic and ultimate ranges. The internal concrete and steel stresses can also be determined for any stage of the response history. A layered 8 node isoparametric element taking account of coupling effect between the membrane and the bending action is developed. An incremental tangent stiffness method is used to obtain a numerical solution. Validity of the method is studied by comparing the numerical solutions with other results.

  • PDF

Development of Integrated Model of Boiler and Its Supporting Steel Structure of Coal-Fired Power Plant for Finite Element Analysis (유한요소해석을 위한 석탄화력발전소의 보일러와 지지 철골의 통합모델 개발)

  • Lee, Boo-Youn
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.4
    • /
    • pp.9-19
    • /
    • 2020
  • An integrated finite element model composed of a boiler and its supporting steel structure for a 375-MW coal-fired power plant was developed. This study used the developed model for seismic analysis using SAP2000 software. For the complex superheaters, reheaters, economizers, and membrane walls of the boiler, which consisted of numerous tubes, a method of modeling them by the equivalent elements in the viewpoint of stiffness and/or inertia was proposed. In addition, a method of modeling for the connection between the boiler and steel structure was proposed. Many hangers that connect the boiler to the girders of a steel structure were transformed into equivalent hangers by decreasing the number. The displacements of the boiler stoppers on the buckstay and the posts of the steel structure were coupled by considering their interface condition. Static analysis under the self-loading condition for the developed integrated model was implemented, and the results of deformation indicated that the behavior of the steel members and the major components of the boiler were appropriate. In conclusion, the integrated model developed in this study can be used to evaluate the safety of the boiler and steel structure under seismic loads.

Bending Effect of Laminated Plates with a Circular Hole Repaired by Single-Sided Patch Based on p-Convergent Full Layerwise Model (p-수렴 완전층별모델에 의한 일면패치로 보강된 원공 적층판의 휨효과)

  • Woo, Kwang-Sung;Yang, Seung-Ho;Ahn, Jae-Seok;Shin, Young-Sik
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.5
    • /
    • pp.463-474
    • /
    • 2009
  • Double symmetric patch repair of existing structures always causes membrane action only, however, in many cases this technique is not practical. On the other hand, the bending stiffness of the patch and the skin increases as tensile loading is increased and affects the bending deformation significantly in the case of single-sided patch repair. In this study, the p-convergent full layerwise model has been proposed to determine the stress concentration factor in the vicinity of a circular hole as well as across the thickness of plates with single-sided patch repair. In assumed displacement field, the strain-displacement relations and 3-D constitutive equations of a layer are obtained by the combination of 2-D and 3-D hierarchical shape functions. The transfinite mapping technique has been used to represent a circular boundary and Gauss-Lobatto numerical integration is implemented in order to directly obtain stresses occurred at the nodal points of each layer without other extrapolation techniques. The accuracy and simplicity of the present model are verified with comparison of the previous results in literatures using experiment and conventional 3-D finite element. Also, the bending effect has been investigated with various patch types like square, circular and annular shape.

Damage Estimation for Offshore Tubular Members Under Quasi-Static Loading (준정적하중(準靜的荷重)을 받는 해양구조물(海洋構造物)의 원통부재(圓筒部材)에 대한 손상예측(損傷豫測))

  • Paik, Jeom-K.;Shin, Byung-C.;Kim, Chang-Y.
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.26 no.4
    • /
    • pp.81-93
    • /
    • 1989
  • The present study attempts to develop the theoretical model for the damage estimation of offshore tubular members which are subjected to the accidental impact loads due to collision, falling objects and so on. For the reasons of the simplicity of the problem being considered, however, this paper postulates that the accidental load can be approximated to be the quasi-static one, in which dynamic effects are negelcted. Based upon the theoretical and experimental results which are obtained from the present study as well as the existing literature, the load-displacement relations taking the interaction effect between the local denting and the global bending deformation into account are presented in the explicit form when the concentrated lateral load acts on the tubular member whose end condition is supposed to be rotation ally free and axially restrained, in which membrane forces develop. Thus, the practical estimation of damage deformation for the local denting and the global bending damage of tubular members against the accidental loads is possible and also the collision absorption capability of the member can be calculated by performing the integration of the area below the given load-displacement curves, provided that all the energy is dissipated to the deforming the member itself.

  • PDF

The Motion Response of an Oil Boom with Flexible Skirt (유연한 스커트를 가진 오일붐의 운동응답해석)

  • 성홍근;조일형;최항순
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.7 no.2
    • /
    • pp.156-162
    • /
    • 1995
  • A numerical method for a 2-D oil boom model considering the flexibility of skirt has been developed The neater is assumed rigid and the skirt is tensioned membrane having a point mass at its end The fluid motion is potential. The kinematic condition which demands the continuity of the displacement is imposed at the joint between the floater and the skirt. The dynamic condition for the point mass is imposed at the bottom end of the skirt. The numerical method is based on the Green's function method in the frame of linear potential theory. It finds it's solution simultaneously from the total system of three equations, integral equation, the equation of motion of the floater and the equilibrium equation of the deformation of the skirt. Integral equation is derived by applying the Green's theorem to radiation potential and Green's function. Proper descretization of those three equations leads to the system of a linear algebraic equation. Due to the flexibility of skirt the motion of floater can be diminished in some range of wave frequency and furthermore the mechanism of resonance of the oil boom can be changed. The motion responses of various oil booms have been compared varying the length of the skirt and the point mass. The numerical method has been validated indirectly from the good correspondence between the motion responses of the flexible skirt model and the rigid skirt model in low frequency limit.

  • PDF