• Title/Summary/Keyword: membrane bio-reactor(mbr)

Search Result 37, Processing Time 0.022 seconds

The Effects of HRT, MLSS and DO on Nitrogen Removal Efficiency in MBR Process with Internal Baffle (내부 Baffle을 설치한 MBR 공정에서 HRT와 MLSS농도, DO농도 변화가 질소제거 효율에 미치는 영향)

  • Whang, Gye-Dae;Park, Joo-Young
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.5
    • /
    • pp.527-537
    • /
    • 2009
  • Three sets of parallel MBRs (reactor No.1, reactor No.2, reactor No.3) maintaining an MLSS of 4,000 mg/L, 6,000 mg/L and 8,000 mg/L, respectively, were operated to investigate the effect of various HRTs and DO concentration of MBRs on the removal efficiency of organic matters and nitrogen. The HRTs were operated on 4 hr, 6 hr, 8 hr. DO concentrations were ranged 1.5~2.0 mg/L and 0.5~1.0 mg/L respectively on each HRT conditions. MBR was divided into an aerated part and non-aerated part by baffle placed under the water. DO concentrations were controlled by altering the position of baffle. In terms of TSS and CODCr, all systems had a similar level of the removal under varied HRTs and MLSS. TSS removal efficiency was more than 99% and CODCr removal was ranged 94~97% under all conditions. Under the same condition on the HRT and MLSS concentrations, DO concentrations did not affect the organic removal efficiency. On the nitrification efficiency, with high DO concentration, as HRT or MLSS increased, the slight increment of nitrification efficiency was observed. However, under the low DO concentration, increase of MLSS and HRT resulted in larger increase of the nitrification efficiency. At the same HRT and MLSS, the nitrification efficiency increased greatly with up to 16% as DO increased. When the HRT increased from 4hr to 8hr, the denitrification efficiency slightly increased under most of conditions. However, the increase of MLSS resulted in about 19~39% denitrification efficiency increment. MLSS concentrations showed great effect on the denitrification. The increase of the DO concentration at the same HRT and MLSS resulted in decrease of denitrification efficiency with up to 27%. In all systems, the denitrification efficiency had more influence on the TN removal efficiency than nitrification efficiency. So, MLSS concentration has greater effect on the TN removal than HRT and DO. The TN removal efficiency increased as MLSS increased with up to 37%. As a result, the highest TN removal efficiency was observed 79.0% at the condition showed the highest denitrification efficiency that DO of 0.5~1.0 mg/L, an HRT of 8 hr, and 8,000 mg/L of MLSS concentration were maintained.

Comparison of Filtration Resistances according to Membrane Cleaning Methods (막표면의 케이크층 세정 방법에 따른 여과 저항값 비교)

  • Han, Song-Hee;Chang, In-Soung
    • Journal of Environmental Science International
    • /
    • v.25 no.6
    • /
    • pp.817-827
    • /
    • 2016
  • The resistance in series model has been frequently used for determination of various filtration resistance to correctly understand the membrane fouling behaviour in MBR (membrane bio-reactor) for wastewater treatment. The cake layer resistance ($R_c$) which is commonly determined by calculation of flux dataset that are obtained empirically before and after removing the cake layer on membrane surface. However, the calculated Rc values are very dependent on the cleaning methods adapted for removal of cake layer. This study investigated how the various cleaning options affect $R_c$. Seven different cleaning methods were employed: i) ultrasonication (100 W, 10 min), ii) ultrasonication (200 W, 60 min), iii) ultrasonication (400 W, 120 min), iv) water rinsing in a shaker (100 rpm, 10 min), v) water rinsing in a shaker (300 rpm, 60 min), vi) water rinsing, vii) sponge scrubbing. For the hydrophilic PES membrane, the cake layer removal efficiencies ranged from 64% to 10%, indicating that the removal of cake layer was highly dependent on the cleaning options. For the hydrophobic PVDF membrane, the cake layer removal efficiencies ranged from 79% to 97%. Consequently, a standardized method for cake layer removal to determine cake resistance ($R_c$) is needed for correct interpretation of the fouling phenomena.

Numerical Simulation of Three Dimensional Fluid Flow Phenomena in Cylindrical Submerged Flat Membrane Bioreactor for Aeration Rate (원통 침지형 평막 생물반응기 내 산기량에 따른 3차원 유동현상에 관한 수치모사)

  • Kim, Dae Chun;Chung, Kun Yong
    • Applied Chemistry for Engineering
    • /
    • v.25 no.4
    • /
    • pp.401-408
    • /
    • 2014
  • In membrane bio-reactor (MBR), the aeration control is one of the important independent variables to decrease fouling and to save energy with shear stress change on the membrane surface. The paper was carried out for numerical simulation of 3-dimensional fluid flow phenomena of the cylindrical bioreactor with submerged flat membranes equipped in the center and supplied the air from the bottom by using the COMSOL program. The viscosity and temperature of solution were assumed to be constant, and the specific air demand based on permeate volume ($SAD_p$) defined as scouring air per permeate rates was used as a variable. The calculated CFD velocities were compared with those of the velocity meter measurement and video image analysis, respectively. The results were good agreement each other within 11% error. For fluid flow in the reactor the liquid velocity increased rapidly between the air diffuser and membrane module, but the velocity decreased during flowing of the membrane module. Also, the velocity increased as it was near from the reactor wall to the central axis. The calculated shear stress on the membrane surface showed the highest value at the center part of the module bottom side and increased as aeration rate increased. Especially, the wall shear stress increased dramatically as the aeration rate increased from 0.15 to 0.25 L/min.

Nitrogen Removal Characteristic of Excreta Wastewater Using SBR and MBR Processes (SBR 및 MBR 공정을 이용한 분뇨폐수에서의 질소제거 특성)

  • Jung, Jin-Hee;Yoon, Young-Nae;Lee, Seul-Kee;Han, Young-Rip;Lee, Seung-Chul;Choi, Young-Ik
    • Journal of Environmental Science International
    • /
    • v.24 no.11
    • /
    • pp.1485-1491
    • /
    • 2015
  • There are two treatment processes that are currently applied to ships are the biological treatment process using the activated sludge and the electrochemical treatment. However, neither of them are able to remove both nitrogen and phosphorus due to their limited ability to remove organic matters, which are main causes of the red tide. This study was conducted to identify the characteristics of nitrogen removal factors from manure wastewater by replacing the final settling tank in SBR (Sequencing Batch Reactor) process and applying immersion type hollow fiber membrane. SBR process is known to have an advantage of the least land requirement in special environment such as in ship and the immersion type hollow fiber membrane is more stable in water quality change. As the result, the average in the cases of DO (Dissolved Oxygen) is 2.9(0. 6~3.9) mg/L which was determined to be the denitrifying microorganism activity in anaerobic conditions. The average in the cases of ORP (Oxidation Reduction Potential) is 98.4~237.3 mV which was determined to be the termination of nitrification since the inflection point was formed on the ORP curve due to decrease in the stirring treatment after the aeration, same as in the cases of DO. Little or no variation in the pH was determined to have positive effect on the nitrification. T-N (Total Nitrigen) removal efficiencies of the finally treated water were 71.4%, 72.3% and 66.5% in relatively average figures, thus was not a distinct prominence. In being applied in ships in the future, the operating conditions and structure improvements are deemed necessary since the MEPC (Marine Environment Protection Committee). 227(64) ship sewage nitrogen is less than the standard of 20 Qi/Qe mg/L or the removal rate of 70%.

Study on the Removal of Fluorescent Whitening Agent for Paper-mill Wastewater Reuse using the Submerged Membrane Bioreactor(SMBR) with Ozone Oxidation Process (제지폐수 재이용을 위한 침지형 생물막 여과와 오존산화공정(SMBR-Ozone Oxidation Process)에 의한 형광증백제 제거에 관한 연구)

  • Choi, Jang-Seung;Shin, Dong-Hun;Ryu, Seung-Han;Lee, Jae-Hun;Ryu, Jae-Young;Shin, Won-Sik;Lee, Seul-Ki;Park, Min-Soo;Lee, Sang Oh
    • Textile Coloration and Finishing
    • /
    • v.30 no.1
    • /
    • pp.51-61
    • /
    • 2018
  • In this study, effluent water was produced through Submerged Membrane Bio-Reactor(SMBR) process, which is a simple system and decomposes organic matter contained in wastewater with biological treatment process and performs solid-liquid separation, Especially, ozone oxidation treatment process is applied to effluent water containing fluorescent whitening agent, which is a trace pollutant which is not removed by biological treatment, and influences the quality of reused water. The concentration of $COD_{Cr}$ in the SMBR was $449.3mg/{\ell}-COD_{Cr}$, and the concentration of permeate water was $100.3mg/{\ell}-COD_{Cr}$. The removal efficiency was about 70.1%. The amount of ozone required for the removal of the fluorescent whitening agent in the permeated water in SMBR was $6.67g-O_3/min$, and the amount of ozone required to remove $COD_{Mn}$ relative to the permeate water was calculated to remove $0.997mg-COD_{Mn}$ for 1mg of $O_3$.

Development and Field Application of the Advanced Wastewater Treatment process (KSMBR) by Hollow Fiber Submerged Membrane (침지식 중공사막을 결합한 Dynamic state 하수고도처리공정(KSMBR process)의 개발 및 현장적용평가)

  • Kim, Ji-yeon;Seo, In-seok;Kim, Hong-suck;Kim, Youn-kwon;Kim, Byung-goon;Choi, Chang-gyu;Ahn, Hyo-won;Seo, Wan-seok;Jang, Moon-seog
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.2
    • /
    • pp.358-363
    • /
    • 2006
  • KSMBR process is dynamic state advanced wastewater treatment applied with Trisectional Aeration (TSA) mode combined with membrane. TSA was remodeled conventional intermittent aeration which was operated nonaeration-aeration. TSA operates nonaeration ($N_1$) - aeration (A) - nonaeration ($N_2$) in Trisectional Aeration Reactor (TAR). Organics of influent could be nearly consumed to denitrification without influence by remained DO in TAR and it could be operated about sludge return ratio of 1Q (influent base). The purpose of this study was to apply KSMBR to the full-scale plant and to evaluate efficiency of nitrogen and phosphorus removal and TSA operation. The result of this study, average CODcr/T-N and CODcr/T-P ratio were 7.8 and 59.6, respectively. BOD, TCODcr, SS, T-N, T-P, E-coli removal efficiency were 98.4, 95.2, 73.0, 69.6, 99.95 %, respectively. KSMBR obtained high removal efficiencies of C, N and P when it applied full-scale plant.

Study on the Removal of Fluorescent Whitening Agent by Pretreatment Ozone Oxidation for MBR Process Application (MBR 공정 적용을 위한 전처리 오존산화에 의한 형광증백제 제거 연구)

  • Choi, Jang-Seung;Ryu, Seung-Han;Shin, Dong-Hun;Lee, Jae-Hun;Lee, Soo-Chol;Kim, Sung-Gi;Ryu, Jae-Young;Shin, Won-Sik;Lee, Seul-Ki;Park, Min-Soo
    • Textile Coloration and Finishing
    • /
    • v.29 no.1
    • /
    • pp.11-17
    • /
    • 2017
  • In this study, ozone oxidation experiment was carried out for the removal of fluorescent whitening agent which is widely used in textile dyeing and paper industry. The stilbene fluorescent whitening agent has been industrialized since the earliest, and the amount of current production is the highest. Due to the characteristics of the fluorescent whitening agent that can not be removed by conventional wastewater treatment methods, the fluorescent whitening agent in wastewater treatment has difficulty in using as recycled water in the process. Pre-treatment ozone oxidation experiment was conducted prior to the introduction of Membrane Bio Reactor(MBR) treatment process by converting biodegradable materials into biodegradable materials. The removal efficiencies of fluorescent whitening agents, a diaminostilbenedisulfonic acid derivative by ozone oxidation were evaluated by $UV_{254}$ Scan, $COD_{Mn}$, T-N and color using a synthetic wastewater sample ($COD_{Mn}=433.0mg/{\ell}$) and paper and paper mill wastewater ($COD_{Mn}=157.2mg/{\ell}$).