• Title/Summary/Keyword: membrane application

Search Result 1,086, Processing Time 0.022 seconds

Influence of Membrane Forming Compounds for Concrete on Water Retention Properties of Concrete Mortar (콘크리트용 피막 양생제가 시멘트 모르타르의 보습특성에 미치는 영향)

  • Lee, Gun-Cheol;Noh, Sang-Kyun;Cho, Byoung-Young;Kim, Young-Geun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2009.11a
    • /
    • pp.117-120
    • /
    • 2009
  • It has been gradually increased with the use of resin based membrane forming agent for curing method, which plays a role in protecting moisture evaporation by forming resin membrane at the surface of concrete. In this paper, tests were carried out to examine moisture retention capability of cement mortar applying membrane forming agent. Dosages and types of the membrane forming agent were varied. It is found that sheet curing sealed with the surface of concrete closely has favorable moisture retention capability. However, the application of membrane forming curing method had superiority in moisture retention capability at early stage but at later age, its capability is deteriorated. Hence, further study regarding altering application method was necessary to secure enhanced moisture retention capability.

  • PDF

Enhanced Thermal Stability of a Silica/Stainless Steel Composite Membrane via the Soaking-Rolling Method

  • Lee, Dong-Wook;Nam, Seung-Eun;Bongkuk Sea;Ihm, Son-Ki;Lee, Kew-Ho
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2004.05a
    • /
    • pp.175-178
    • /
    • 2004
  • Concerning the application of the inorganic composite membranes to high temperature process such as the catalytic dehydrogenation of hydrocarbons, important aspects to consider in the application include the improvement of the thermal stability and good permeability.(omitted)

  • PDF

Research Trends in Bipolar Membrane for Water Dissociation Catalysts and Energy Technology Applications (바이폴라막의 물 분해 촉매 및 에너지 기술 응용의 연구 동향)

  • Do-Hyeong Kim;Sang Yong Nam
    • Membrane Journal
    • /
    • v.34 no.1
    • /
    • pp.10-19
    • /
    • 2024
  • The bipolar membrane is an ion exchange membrane consisting of a cation exchange layer, an anion exchange layer, and an interface layer, and is a membrane that generates protons and hydroxide ions based on water dissociation characteristics. Using these properties, research is being conducted in various application fields such as the chemical industry, food processing, environmental protection, and energy conversion and storage. This paper investigated the concept of bipolar membrane, water dissociation mechanism, and water dissociation catalyst to provide a comprehensive understanding of bipolar membrane technology, were investigated. Lastly, we also investigated the bipolar membrane process that has been recently applied to energy technology.

Update Application of Membrane Technology in Water Environment

  • Okazak, Minoru;Nishida, Takaharu
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1998.06a
    • /
    • pp.25-48
    • /
    • 1998
  • Current topics related to membrane technology under the recent water environment are as follows: - Cryptosporidum Outbreak - Integrity Control System - Water re-use - Recycle Society - Biotreatment and Membrane - Slurry or Sludge Treatment I would like to introduce the actual examples regarding water re-use. mainly on the above 5 topics.

  • PDF

APPLICATION OF TUBULAR MEMBRANE FILTRATION TO LNDUSTRIAL WASTE WATER TRATMENT (산업폐수에 관형막 분리응용)

  • 지은상
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1991.10a
    • /
    • pp.58-63
    • /
    • 1991
  • Membrane technology has been effectively used for many years in certain segments of industrial water treatment. Recent advances in combining sophisticated chemical pre-treatment technology with cross-flow membrane filtration technology have successfully demonstrated that highly efficient, low-cost methods for treating a large of industral streams are available.

  • PDF

Choline chloride-Glycerol (1:2 mol) as draw solution in forward osmosis for dewatering purpose

  • Dutta, Supritam;Dave, Pragnesh;Nath, Kaushik
    • Membrane and Water Treatment
    • /
    • v.13 no.2
    • /
    • pp.63-72
    • /
    • 2022
  • Choline chloride-glycerol (1:2 mol), a natural deep eutectic solvent (NADES) is examined as a draw solution in forward osmosis (FO) for dewatering application. The NADES is easy to prepare, low in toxicity and environmentally benign. A polyamide thin film composite membrane was used. Characterization of the membrane confirmed porous membrane structure with good hydrophilicity and a low structural parameter (722 ㎛) suitable for FO application. A dilute solution of 20% (v/v) NADES was enough to generate moderate water flux (14.98 L m-2h-1) with relatively low reverse solute flux (0.125 g m-2h-1) with deionized water feed. Application in dewatering industrial wastewater feed showed reasonably good water flux (11.9 L m-2h-1) which could be maintained by controlling the external concentration polarization and fouling/scaling mitigation via simple periodic deionized water wash. In another application, clarified sugarcane juice could be successfully concentrated. Recovery of the draw solute was accomplished easily by chilling utilizing thermo responsive phase transition property of NADES. This study established that low concentration NADES can be a viable alternative as a draw solute for dewatering of wastewater and other heat sensitive applications along with a simple recovery process.

Applicability evaluation of microbubble for membrane fouling reduction in wastewater reuse membrane process (하수재이용 막여과 공정에서 막오염 저감을 위한 마이크로버블 적용성 평가)

  • Lee, Chang-Ha;Kim, Geon-Youb;Kim, Hyung-Soo;Kim, Ji-Hoon;Lee, Kyung-Il
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.31 no.2
    • /
    • pp.169-175
    • /
    • 2017
  • This study applied microbubbles to reduce membrane fouling in wastewater reuse membrane processes, evaluated and compared the transmembrane pressure with or without the application of microbubbles and the cleaning efficiency with the application of aeration and microbubbles. In addition, this study analyzed foulants removed from the membrane surface. Changes in the transmembrane pressure of membranes with the presence or absence of microbubbles were observed. As a result, transmembrane pressure (TMP) increasing rate decreased twofold when applying microbubbles to realize stable operations. This study compared and evaluated cleaning efficiency applying aeration and microbubbles. As a result, the cleaning efficiency was 5% higher on average when applying microbubbles. In turbidity and total organic carbon (TOC), foulants were discharged when applying microbubbles twice as much as applying aeration. It is thought that particulate foulants precipitated on the membrane surface were more likely to desorb because the adhesion between the membrane surface and particle was weakened by microbubbles. Therefore, it is considered possible to effectively control membrane fouling because of the increase in cleaning efficiency when applying microbubbles to wastewater reuse membrane processes.

A Demonstrative Operation of A Membrane Filtration System in Siheung Water Treatment Plant (시흥정수장 막여과시설 시범운영)

  • 김한승;김충환;김학철;윤재경;안효원
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2004.07a
    • /
    • pp.57-68
    • /
    • 2004
  • A demonstrative operation of a membrane system with its caparity of 3,600m$^3$/d was carried out using reservoir water as raw water for the application of membrane filtration system to drinking water treatment. The operation was undertaken at a constant flux of 0.9 m$^3$/m$^2$/d for three months. Backwashing with NaClO of 3 ppm was allowed for 30 seconds every 20 minutes of filtration. Physical cleaning was introduced after 69 times of filtration/backwashing cycle with air-scrubbing and backwashing for 1 minute, and flushing for 2 minutes. In this study, water treatment performance was investigated compared with the existing rapid sand filtration process. The membrane system was operated with no significant problems during the test period. Higher water quality was obtained in the membrane filtration than in the rapid sand filtration in terms of particulate matters such as turbidity and microbes. Although the finished water of the membrane filtration contained slightly higher concentration in dissolved matters than that of the conventional one, it met the drinking water standard. The demonstrative operation showed that membrane filtration has a reliability in drinking water treatment. Researches should be needed on cost analysis through long-term operation and optimization of operation condition for further application.

  • PDF

Cement/PVDF hollow-fiber hybrid basement membrane: Preparation, microstructure, and separation application

  • Yabin, Zhang;Xiongfei, Du;Taotao, Zhao
    • Membrane and Water Treatment
    • /
    • v.13 no.6
    • /
    • pp.291-301
    • /
    • 2022
  • In this study, cement/PVDF hollow-fiber hybrid membranes were prepared via a mixed process of diffusion-induced phase separation and hydration. The presence of X-ray diffraction peaks of Ca(OH)2, an AFt phase, an AFm phase, and C-S-H phase confirmed the hydration reaction. Good hydrophilicity was obtained. The cross-sectional and surface morphologies of the hybrid membranes showed that an asymmetric pore structure was formed. Hydration products comprising parallel plates of Ca(OH)2, fibrous ettringite AFt, and granulated particles AFm were obtained gradually. For the hybrid membranes cured for different time, the pore-size distribution was similar but the porosity decreased because of blocking of the hydration products. In addition, the water flux decreased with hydration time, and carbon retention was 90% after 5 h of rejection treatment. Almost all the Zn2+ ions were adsorbed by the hybrid membrane. The above results proved that the obtained membrane could be alternative as basement membrane for separation application.

Application of the Membrane Technology in Thermochemical Hydrogen Production Process using High Temperature Nuclear Heat (원자력의 고온 핵열을 이용한 열화학적 수소제조 프로세스에의 분리막 기술의 응용)

  • 황갑진;박주식;이상호;최호상
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.25-33
    • /
    • 2003
  • It summarized about the application of the membrane technology in thermochemical water-splitting iodine-sulfur process that was hydrogen production using the nuclear heat from the High Temperature Gas-Cooled Reactor (HTGR). Thermochemical water-splitting hydrogen production method using the high temperater nuclear thermal energy could be realized and remained to be solved the investigation subject. And, it is possible for mass-production of hydrogen such as one of the clean energy in future.

  • PDF