• Title/Summary/Keyword: membrane PD

Search Result 131, Processing Time 0.027 seconds

The Effect of Cu Reflow on the Pd-Cu Alloy Membrane Formation for Hydrogen Separation (수소분리용 Pd-Cu 합금 분리막의 Cu Reflow 영향)

  • Mun, Jin-Uk;Kim, Dong-Won
    • Journal of the Korean institute of surface engineering
    • /
    • v.39 no.6
    • /
    • pp.255-262
    • /
    • 2006
  • Pd-Cu alloy membrane for hydrogen separation was fabricated by sputtering and Cu reflow process. At first, the Pd and Cu was continuously deposited by sputtering method on oxidized Si support, the Cu reflow process was followed. Microstructure of the surface and permeability of the membrane was investigated depending on various reflow temperature, time, Pd/cu composition and supports. With respect to our result, Pd-Cu thin film (90 wt.% Pd/10 wt.% Cu) deposited by sputtering process with thickness of $2{\mu}m$ was heat-treated for Cu reflow The voids of the membrane surface were completely filled and the dense crystal surface was formed by Cu reflow behavior at $700^{\circ}C$ for 1 hour. Cu reflow process, which is adopted for our work, could be applied to fabrication of dense Pd-alloy membrane for hydrogen separation regardless of supports. Ceramic or metal support could be easily used for the membrane fabricated by reflow process. The Cu reflow process must result in void-free surface and dense crystalline of Pd-alloy membrane, which is responsible for improved selectivity oi the membrane.

The Effect of Different Light Quality on the Change of Membrane PD of the Guard Cell in Tradescantia virginiana L.

  • Lee, Joon-Sang
    • Korean Journal of Environmental Biology
    • /
    • v.22 no.1
    • /
    • pp.89-92
    • /
    • 2004
  • The effects of different light quality on the change of membrane potential difference (PD) of the guard cell in the intact leaf have been investigated. The mombrane PD was about -5.5 mV by white light of 600 $\mu$moles $m^{-2}\; s^{-1}$. The mean PD of change caused by red light was about -5.2 mV at the light intensity of 80 $\mu$moles $m^{-2}\; s^{-1}$. Membrane PD of guard cells in response to blue light was saturated at low light intensity. However, red and green light enhanced the change of membrane PD of guard cells with increasing intensity. In green light the biggest change of memrane PD was around -4 mV, whereas, with blue light the change of of memrane PD was around -2 mV. Accordingly, the membrane PD of guard cell showed the different degree of hyper-polarization by each wavelength.

Preparation of Pd/Al2O3, Pd/Ag/Al2O3 Membranes and Evaluation of Hydrogen Permeation Performance (Pd/Al2O3, Pd/Ag/Al2O3 분리막의 제조와 수소 투과 성능 평가)

  • Lee, Jeong In;Shin, Min Chang;Zhuang, Xuelong;Hwang, Jae Yeon;Kim, Eok yong;Jeong, Chang-Hun;Park, Jung Hoon
    • Membrane Journal
    • /
    • v.32 no.2
    • /
    • pp.116-125
    • /
    • 2022
  • In this experiment, an α-Al2O3 ceramic hollow fiber was used as a support, and a hydrogen membrane plated with Pd and Pd-Ag was manufactured through electroless plating. The Pd-Ag membrane was annealed at 500℃ for 10 h to form an alloy of Pd and Ag. It was confirmed that it became a Pd-Ag alloy through EDS (Energy Dispersive X-ray Spectroscopy) analysis. Also, the thickness of the Pd, Pd-Ag plating layer was measured to be about 8.98 and 9.29 ㎛ through SEM (Scanning Electron Microscope) analysis respectively. Hydrogen permeation experiment was performed using the H2 gas and mixed gas (H2 and N2) in the range of 350~450℃ and 1-4 bar using the prepared hydrogen membrane. Under the H2 gas condition, the Pd and Pd-Ag membrane has a flux of up to 21.85 and 13.76 mL/cm2·min and also separation factors of 1216 and 361 were obtained in the mixed gas at 450℃ and 4 bar conditions respectively.

Hydrogen Isotopes Recovery Using Pd Membrane and Process Simulation (Pd 분리막을 이용한 수소동위원소 회수 실험과 공정 시뮬레이션)

  • JUNG, WOO-CHAN;PARK, JONG-HWAN;HAN, SANG-WOO;JANG, MIN-HO;LEE, HYEON-GON
    • Journal of Hydrogen and New Energy
    • /
    • v.32 no.4
    • /
    • pp.219-227
    • /
    • 2021
  • Hydrogen isotopes, which are used as raw materials in fusion reaction, participate in the reaction only in small amount, and most of them are released together with impurities. In order to recover and reuse only hydrogen isotopes from this exhaust gas, a recovery process is required, and most of the hydrogen isotopes can be recovered using a Pd Membrane. In this study, the recovery rate of hydrogen isotopes was measured through the first and second stage Pd membrane experiments. In the case of the experiment using a single stage Pd membrane, about 99.2%, and in the case of the first stage and second stage Pd membrane connection experiments, a recovery rate of 99.9% or more was obtained. Therefore, the recovery rate of Pd membrane process applied to hydrogen can be applied to hydrogen isotopes. In addition, the simulation model was established using aspen custom modeler, a commercial software, and the validity of the simulation was checked by applying the references and experimental data. The simulation results based on the experimental data showed a difference of 2% or less.

Hydrogen Perm-Selectivity Property of the Palladium Hydrogen Separation Membranes on Porous Stainless Steel Support Manufactured by Metal Injection Molding (금속 사출성형 방식의 다공성 스테인리스 강 지지체에 형성된 팔라듐 수소 분리막의 투과 선택도 특성)

  • Kim, Se-Hong;Yang, Ji-Hye;Lim, Da-Sol;Kim, Dong-Won
    • Journal of the Korean institute of surface engineering
    • /
    • v.50 no.2
    • /
    • pp.98-107
    • /
    • 2017
  • Pd-based membranes have been widely used in hydrogen purification and separation due to their high hydrogen diffusivity and infinite selectivity. However, it has been difficult to fabricate thin and dense Pd-based membranes on a porous stainless steel(PSS) support. In case of a conventional PSS support having the large size of surface pores, it was required to use complex surface treatment and thick Pd coating more than $6{\mu}m$ on the PSS was required in order to form pore free surface. In this study, we could fabricate thin and dense Pd membrane with only $3{\mu}m$ Pd layer on a new PSS support manufactured by metal injection molding(MIM). The PSS support had low surface roughness and mean pore size of $5{\mu}m$. Pd membrane were prepared by advanced Pd sputter deposition on the modified PSS support using fine polishing and YSZ vacuum filling surface treatment. At temperature $400^{\circ}C$ and transmembrane pressure difference of 1 bar, hydrogen flux and selectivity of $H_2/N_2$ were $11.22ml\;cm^{-2}min^{-1}$ and infinity, respectively. Comparing with $6{\mu}m$ Pd membrane, $3{\mu}m$ Pd membrane showed 2.5 times higher hydrogen flux which could be due to the decreased Pd layer thickness from $6{\mu}m$ to $3{\mu}m$ and an increased porosity. It was also found that pressure exponent was changed from 0.5 on $6{\mu}m$ Pd membrane to 0.8 on $3{\mu}m$ Pd membrane.

LLE and SLM studies for Pd(II) separation using a thiodiglycolamide-based ligand

  • Kumbhaj, Shweta;Prabhu, Vandana;Patwardhan, Anand V.
    • Membrane and Water Treatment
    • /
    • v.9 no.6
    • /
    • pp.463-471
    • /
    • 2018
  • The present paper deals with the liquid-liquid extraction and flat sheet supported liquid membrane studies of Pd(II) separation from nitric acid medium using a novel synthesized ligand, namely, N,N,N',N'-tetraethyl-2,2-thiodiethanthiodiglycolamide (TETEDGA). The effect of various diluents and stripping reagents on the extraction of Pd(II) was studied. The liquid-liquid extraction studies showed complete extraction of Pd(II) in ~ 5 min. The influence of nitric acid and TETEDGA concentration on the distribution of Pd(II) has been investigated. The increase in nitric acid concentration resulted in increase in extraction of Pd(II). Stoichiometry of the extracted species was found to be $Pd(NO_3)_2{\cdot}TETEDGA$ by slope analysis method. Extraction studies with SSCD solution showed negligible uptake of Pt, Cr, Ni, and Fe, thus showing very high selectivity and extractability of TETEDGA for Pd(II). The flat sheet supported liquid membrane studies showed quantitative transport of Pd(II), ~99%, from the feed ($3M\;HNO_3$) to the strippant (0.02 M thiourea diluted in $0.4M\;HNO_3$) using 0.01 M TETEDGA as a carrier diluted in n-dodecane. Extraction time was ~160 min. Parameters such as feed acidity, TETEDGA concentration in membrane phase, membrane porosity etc. were optimized to achieve maximum transport rate. Permeability coefficient value of $2.66{\times}10^{-3}cm/s$ was observed using TETEDGA (0.01 M) as carrier, at 3 M, $HNO_3$ feed acidity across $0.2{\mu}m$ PTFE as membrane. The membrane was found to be stable over five runs of the operation.

Hydrogen Permeation Performance of Ni48Nb32Zr20 Alloy Membrane Coated with Pd by Sputtering (스퍼터링으로 Pd가 코팅된 Ni48Nb32Zr20 합금분리막의 수소 투과 성능)

  • Min Chang Shin;Jung Hoon Park
    • Membrane Journal
    • /
    • v.34 no.2
    • /
    • pp.140-145
    • /
    • 2024
  • In modern times, when a change in the energy paradigm is required, hydrogen is an attractive energy source. Among these hydrogen purification technologies, technology using a membrane is attracted attention as a technology that can purify high purity hydrogen at low cost. However, palladium(Pd), which is mostly used because of its excellent hydrogen separation performance, is very expensive, so a replacement material is needed. In this study, a alloy membrane was manufactured from an alloy of niobium (Nb), which has high hydrogen permeability but is weak to hydrogen embrittlement, and nickel (Ni) and zirconium (Zr), which have low hydrogen permeability but are highly durable. Hydrogen permeation characteristics were confirmed under conditions of 350~450 ℃ at 1 to 4 bar. The maximum hydrogen permeation flux was 0.69 ml/cm2/min for the Ni48Nb32Zr20 alloy membrane without Pd coating, and 13.05 ml/cm2/min for the Pd coated alloy membrane.

Hydrogen Permeation Performance of Pd, Pd/Cu Membranes Manufactured through Electroless Plating (무전해 도금을 이용해 제작한 Pd, Pd/Cu 분리막의 수소 투과 성능)

  • Jeong In, Lee;Min Chang, Shin;Xuelong, Zhuang;Jae Yeon, Hwang;Chang-Hun, Jeong;Jung Hoon, Park
    • Membrane Journal
    • /
    • v.32 no.6
    • /
    • pp.456-464
    • /
    • 2022
  • Hydrogen permeation performance was analyzed by manufacturing Pd and Pd-Cu membranes through electroless plating. As a support for the Pd and Pd-Cu membranes, α-Al2O3 ceramic hollow fiber were used. Pd-Cu membrane was manufactured through sequential electroless plating, and then annealing was performed at 500°C, for 18 h in a hydrogen atmosphere to make Pd and Cu alloy. After annealing, the Pd-Cu membrane confirmed that the alloy was formed through EDS (Energy Dispersive X-ray Spectroscopy) and XRD (X-ray Diffraction) analysis. In addition, the thickness of the Pd and Pd-Cu plating layers were measured to be about 3.21 and 3.72 µm, respectively, through SEM (Scanning Electron Microscope) analysis. Hydrogen permeation performance was tested for hydrogen permeation in the range of 350~450°C and 1~4 bar in hydrogen single gas and mixed gas (H2, N2). In a single hydrogen gas, Pd and Pd-Cu membranes have flux of up to 54.42 and 67.17 ml/cm2⋅ min at 450 °C and 4 bar. In the mixed gas, it was confirmed that the separation factors of 1308 and 453 were obtained under the conditions of 450 °C and 4 bar.

Hydrogen Transport through Palladium Foil Placed in Nafion Electrolyte of H2/O2 Fuel Cellsorption

  • Song, Seong-Min;Koo, Il-Gyo;Lee, Woong-Moo
    • Journal of Hydrogen and New Energy
    • /
    • v.12 no.4
    • /
    • pp.257-265
    • /
    • 2001
  • Placing a hydrogen conducting, methanol impermeable metallic barrier like palladium (Pd) is a well-known method for preventing methanol crossover through solid polymer electrolyte for direct methanol fuel cells (DMFC). Applying a bias potential between the anode and the barrier can further develop this concept so that the hydrogen transfer rate is enhanced. Since hydrogen diffuses in Pd as atomic form while it moves through nafion electrolyte as ion, it has to be reduced or oxidized whenever it passes the interface formed by Pd and the electrolyte. We performed experiments to measure the hydrogen transport through the Pd membrane placed in Nafion electrolyte of hydrogen/oxygen fuel cell (PEMFC). Applying a bias potential between the hydrogen electrode of the cell and the Pd membrane facilitated the hydrogen passage through the Pd membrane. The results show that the cell current measured with the Pd membrane placed reached almost 40 % the value measured with the cell without Pd membrane. It was found that the current flown through the bias path is only a few percent of the cell current.

  • PDF

Preparation and Gas Permeation Performance of Pd-Ag-Cu Hydrogen Separation Membrane Using α-Al2O3 Support (α-Al2O3 지지체를 이용한 Pd-Ag-Cu 수소 분리막의 제조 및 기체투과 성능)

  • Sung Woo Han;Min Chang Shin;Xuelong Zhuang;Jae Yeon Hwang;Min Young Ko;Si Eun Kim;Chang Hoon Jung;Jung Hoon Park
    • Membrane Journal
    • /
    • v.34 no.1
    • /
    • pp.50-57
    • /
    • 2024
  • In this experiment, Pd-Ag-Cu membrane was manufactured using electroless plating on an α-Al2O3 support. Pd, Ag and Cu were each coated on the surface of the support through electroless plating and heat treatment was performed for 18 h at 500℃ in H2 in the middle of electroless plating to form Pd alloy. The surface of the Pd-Ag-Cu membrane was observed through Scanning Electron Microscopy (SEM), and the thickness of the Pd membrane was measured to be 7.82 ㎛ and the thickness of the Pd-Ag-Cu membrane was measured to be 3.54 ㎛. Energy dispersive X-ray spectroscopy and X-ray diffraction analysis confirmed the formation of a Pd-Ag-Cu alloy with a composition of Pd-78wt%, Ag-8.81wt% and Cu-13.19wt%. The gas permeation experiment was conducted under the conditions of 350~450℃ and 1~4 bar in H2 single gas and H2/N2 mixed gas. The maximum H2 flux of the hydrogen separation membrane measured in H2 single gas is 74.16 ml/cm2·min at 450℃ and 4 bar for the Pd membrane and 113.64 ml/cm2·min at 450℃ and 4 bar for the Pd-Ag-Cu membrane. In the case of the separation factor measured in H2/N2 mixed gas, separation factors of 2437 and 11032 were measured at 450℃ and 4 bar.