• 제목/요약/키워드: medical internal radiation dosimetry

검색결과 31건 처리시간 0.02초

자궁주위 방사선 근접치료시 MIRD 팬텀을 이용한 주변장기의 피폭환경평가 (Assessment of Dose Distribution using the MIRD Phantom at Uterine Cervix and Surrounding Organs in High Doserate Brachytheraphy)

  • 이윤종;노영창;이재기
    • 환경생물
    • /
    • 제24권4호
    • /
    • pp.387-391
    • /
    • 2006
  • Manchester system 타입의 장착기중 상, 하부에 차폐체가 장착되어 있는 Henschke 장착기를 이용하여 자궁암 근접치료시 자궁 및 주변장기의 선량분포를 평가하기 위하여 치료계획수립에 사용되는 실용프로그램 결과와 몬테칼로 모의계산 결과를 비교하였다. 또한 자궁 및 주변 정상조직이 받은 선량을 계산하기 위해 ORNL(Oak Ridge National Laboratory)에서 수립한 여성의 MIRD (Medical Internal Radiation Dose)형 모의피폭체를 이용 하여 주변장기가 받는 선량을 MCNP로 계산하였다. 몬테칼로 모사에는 MCNP 4B코드를 사용하였으며, 실용계산프로그램에는 GAMMADOT를 이용하였다 MCNP계산에는 $^{192}Ir$ 선원과 장착기의 기하학적 모양을 정밀하게 모사하여 계산 오차를 줄이도록 하였으며, 치료계획용 실용계산프로그램의 계산 조건과 동일하게 치료선원의 강내 체류시간과 체류위치를 적용하여 선량을 계산하였다. 주요 선량 비교 평가점은 Manchester system에서 사용되는 4곳과 ICRU 38에서 Manchester system을 보완하기 위해 제시한 방광표면 및 직장이였다. 실용계산 결과는 MCNP모의계산의 결과와 비교했을 때 대부분 위치에서 상대오차 4% 이내의 결과를 보였고, 난형체의 차폐체 장착효과로 인한 방광과 직장에서의 선량감쇠효과는 각각 19%, 20%였다.

Monte Carlo-based identification of electron and proton edges for calibration of miniaturized tissue equivalent proportional counter

  • Mingi Eom;Sukwon Youn;Sung-Joon Ye
    • Nuclear Engineering and Technology
    • /
    • 제55권11호
    • /
    • pp.4167-4172
    • /
    • 2023
  • Miniaturized tissue equivalent proportional counters (mini-TEPCs) are proper for radiation dosimetry in medical application because the small size of the dosimeter could prevent pile-up effect under the high intensity of therapeutic beam. However, traditional methods of calibrating mini-TEPCs using internal alpha sources are not feasible due to their small size. In this study, we investigated the use of electron and proton edges on Monte Carlo-generated lineal energy spectra as markers for calibrating a 0.9 mm diameter and length mini-TEPC. Three possible markers for each spectrum were calculated and compared using different simulation tools. Our simulations showed that the electron edge markers were more consistent across different simulation tools than the proton edge markers, which showed greater variation due to differences in the microdosimetric spectra. In most cases, the second marker, yδδ, had the smallest uncertainty. Our findings suggest that the lineal energy spectra from mini-TEPCs can be calibrated using Monte Carlo simulations that closely resemble real-world detector and source geometries.

유리선량계를 이용한 투과선량 기반 환자선량 평가 시스템 개발을 위한 가능성 연구 (Feasibility Study for Development of Transit Dosimetry Based Patient Dose Verification System Using the Glass Dosimeter)

  • 정성훈;윤명근;김동욱;정원규;정미주;최상현
    • 한국의학물리학회지:의학물리
    • /
    • 제26권4호
    • /
    • pp.241-249
    • /
    • 2015
  • 방사선치료는 수술, 항암치료와 함께 암의 3대 치료방법으로써 많은 암환자들이 방사선치료를 받게 된다. 최대한 많은 방사선을 암에 집중시키고 최대한 적은 방사선을 주변 정상 조직에 가해주기 위해 치료 전 치료계획을 철저히 세우고 품질 관리를 시행하지만 방사선치료가 잘못 시행되어 의도치 않은 방사선이 환자에게 전달되는 의료사고가 발생하기도 한다. 이를 해결하기 위해 환자 내부의 선량을 검증하기 위한 방법을 투과선량 측정을 통한 환자 내부선량의 역추정 방법이 제시되고 있다. 본 연구에서 제시한 투과선량을 이용한 환자선량 계산 방법을 거리역자승법칙, 심부선량백분율, scatter factor를 이용한 방법으로써 실제 환자 선량 평가 가능성에 대해 균질한 물등가 팬텀을 이용한 연구이다. 투과선량에 대한 이온함과 유리선량계의 교정 결과 유리선량계의 신호값이 이온함으로 측정한 선량값에 비해 6 MV에서 0.824, 10 MV에서 0.736배인 것으로 나타났고 scatter factor는 평균적으로 1.4정도인 것으로 확인되었다. 심부선량백분율 데이터를 사용하기 위해 Mayneord F factor를 적용하였으며 위의 정보들을 이용하여 균질한 팬텀에서 알고리즘을 검증한 결과 최대 오차 약 1.65%로 계산이 정확하게 실시됨을 확인하였다.

A Review of Computational Phantoms for Quality Assurance in Radiology and Radiotherapy in the Deep-Learning Era

  • Peng, Zhao;Gao, Ning;Wu, Bingzhi;Chen, Zhi;Xu, X. George
    • Journal of Radiation Protection and Research
    • /
    • 제47권3호
    • /
    • pp.111-133
    • /
    • 2022
  • The exciting advancement related to the "modeling of digital human" in terms of a computational phantom for radiation dose calculations has to do with the latest hype related to deep learning. The advent of deep learning or artificial intelligence (AI) technology involving convolutional neural networks has brought an unprecedented level of innovation to the field of organ segmentation. In addition, graphics processing units (GPUs) are utilized as boosters for both real-time Monte Carlo simulations and AI-based image segmentation applications. These advancements provide the feasibility of creating three-dimensional (3D) geometric details of the human anatomy from tomographic imaging and performing Monte Carlo radiation transport simulations using increasingly fast and inexpensive computers. This review first introduces the history of three types of computational human phantoms: stylized medical internal radiation dosimetry (MIRD) phantoms, voxelized tomographic phantoms, and boundary representation (BREP) deformable phantoms. Then, the development of a person-specific phantom is demonstrated by introducing AI-based organ autosegmentation technology. Next, a new development in GPU-based Monte Carlo radiation dose calculations is introduced. Examples of applying computational phantoms and a new Monte Carlo code named ARCHER (Accelerated Radiation-transport Computations in Heterogeneous EnviRonments) to problems in radiation protection, imaging, and radiotherapy are presented from research projects performed by students at the Rensselaer Polytechnic Institute (RPI) and University of Science and Technology of China (USTC). Finally, this review discusses challenges and future research opportunities. We found that, owing to the latest computer hardware and AI technology, computational human body models are moving closer to real human anatomy structures for accurate radiation dose calculations.

호흡에 의해 내부 움직임을 갖는 장기에 전달되는 선량에서 Time Gating Threshold (TGT)의 효과 (An Effect of Time Gating Threshold (TGT) on the Delivered Dose at Internal Organ with Movement due to Respiration)

  • 김연래;정진범;정원균;홍세미;서태석
    • 한국의학물리학회지:의학물리
    • /
    • 제16권2호
    • /
    • pp.89-96
    • /
    • 2005
  • 본 연구는 호흡에 따라 내부 장기가 움직일 때, 내부 장기가 가장 안정적인 구간의 문턱 값(threshold)을 시간으로 설정한 후 선량분포에 대한 연구를 수행하였다. 일반적으로 정상적인 호흡주기 중에서 시간대비 내부 장기 움직임이 호기 상태에서 적게 나타난다. 그러므로 시간동기 문턱 값(time gating threshold, TGT)은 내부 장기 움직임이 가장 적은 호기 시 1 초 동안 움직일 때의 선량분포를 평가하였다. TGT를 설정했을 때 선량분포를 비교하기 위해 다음 조건으로 방사선을 조사하였다. 내부 장기가 1) 고정된 상태, 2) 문책 값 범위 내에서 움직일 때, 3) 문턱 값 범위 밖에서 움직일 때, 각각의 내부 장기 움직임 조건을 구동팬톰시스템으로 모사하였다. 그리고 필름 선량 측정법(film dosimetry)을 이용하여 비교 평가하였다. TGT를 1초로 설정하고 내부적 움직임을 고려하여 선량분포를 획득했을 때 치료시간은 증가하였다. 그러나 TGT를 1초로 설정한 것은 내부적 움직임을 고려하지 않은 선량분포 즉, 치료 조사면 내에 장기의 움직임이 없을 때와 비슷한 선량분포를 얻을 수 있었다. 그리고 문턱 詰없이 내부 장기가 움직일 때와 비교해서 반음영 영역에 불필요한 선량을 줄일 수 있었다. 또한 치료시간을 줄이기 위해서 문턱 값을 1.4초로 설정했을 때가 1초로 설정했을 때보다 시간 비에 따른 선량분포에 대해 효과적인 결과를 얻지 못했다. 즉, 시간은 줄었지만 치료영역 밖에 많은 선량이 분포하였다. 임상적으로 TGT를 설정해서 방사선 치료를 하기 위해서는 수학적인 계산 방법에 의한 내부 장기의 움직임을 표현하는 것이 아니라 실측에 의해서 모든 환자의 외부 움직임과 내부 움직임을 측정해야 한다. 또한 내부와 외부 움직임의 상관관계를 분석해서 환자의 호흡주기에 따른 내부 장기의 움직임 중에 이상적인 위치에서 문책 값을 설정 후 방사선치료를 시행하면 정상조직은 낮은 선량이 분포하면서 치료성적이 향상될 것이라 예상된다.

  • PDF

혼탁매질에서 광분포에 관한 Monte Carlo 시뮬레이션 (Monte Carlo Simulation on Light Distribution in Turbid Material)

  • 김기준;성기천
    • 한국응용과학기술학회지
    • /
    • 제15권4호
    • /
    • pp.11-20
    • /
    • 1998
  • The propagation of light radiation in a turbid medium is an important problem that confronts dosimetry of therapeutic laser delivery and the development of diagnostic spectroscopy. Scattered light is measured as a function of the position(distance r, depth z) between the axis of the incident beam and the detection spot. Turbid sample yields a very forward-directed scattering pattern at short range of position from source to detector, whereas the thicker samples greatly attenuated the on-axis intensity at long range of position. The portions of scattered light reflected from or transmitted throughphantom depend upon internal reflectance and absorption properties of the phantom. Monte Carlo simulation method for modelling light transport in tissue is applied. It uses the photon is moved a distance where it may be scattered, absorbed, propagated, internally reflected, or transmitted out of tissue. The photon is repeatedly moved until it either escape from or is absorbed by the phantom. In order to obtain an optimum therapeutic ratio in phantom material, optimum control the light energy fluence rate is essential. This study is to discuss the physical mechanisms determining the actual light dose in phantom. Permitting a qualitative understanding of the measurements. It may also aid in designing the best model for laser medicine and application of medical engineering.

$^{188}He$을 이용한 혈관내 방사선 치료시 시술자의 방사선 피폭 수준 (Radiation Exposure of Operator in Intracoronary Radiotherapy Using $^{188}Re$)

  • 지의규;이명묵;우홍균
    • Journal of Radiation Protection and Research
    • /
    • 제25권4호
    • /
    • pp.191-195
    • /
    • 2000
  • 현재 서울대학교병원에서 진행중인 연구의 일환으로 혈관 내 방사선치료 시 시술자의 방사선피폭 정도 및 위험성에 대해 알아보고자 연구를 시행하였다. 심장혈관 폐색으로 연구에 포함되어 방사선치료른 시행 받은 42명의 환자 중 측정이 완벽한 34명의 자료를 토대로 분석을 시행하였다. 혈관내 방사선치료는 관상동맥성형술 직후 풍선도자법을 이용하여 대상 동맥의 중막에 17 Gy를 조사하였다. 사용된 동위원소는 $^{188}Re$이었으며 GM측정기로 각기 다른 8점에서 피폭선량을 측정하였다. 환자의 심장부위에서 10cm, 40cm 떨어진 지점을 시술자의 최대피폭량, 전신피폭량의 기준으로 삼았다. 치료선량의 중앙값은 111.6 mCi이었고 중앙치료시간은 576초였다. 환자 심장부위에서 l0cm, 40cm 지점의 평균 피폭 선량율은 0.43 mSv/hr, 0.30 mSv/hr 이었고, 각 지점에서의 시술 당 평균 피폭 선량은 0.07 mSv, 0.05 mSv 이었다. 이 수치는 ICRP-60나 과학기술부 고시에서 권고하고 있는 한계 피폭선량보다 훨씬 적은 값으로 현재 저울대학교병원에서 시행하고 있는 혈관내 방사선 치료법은 방사선방어 면에서 매우 안전한 방법임을 확인할 수 있었다.

  • PDF

갈색세포종 환자에서 Medical Internal Radiation Dose법을 이용한 I-131 Metaiodobenzylguanidine 치료 후 흡수선량 평가 (Radiation Absorbed Dose Measurement after I-131 Metaiodobenzylguanidine Treatment in a patient with Pheochromycytoma)

  • 양원일;김병일;이재성;이정림;최창운;임상무;홍성운
    • 대한핵의학회지
    • /
    • 제33권4호
    • /
    • pp.422-429
    • /
    • 1999
  • 목적: 근치적 절제술이 불가능하거나 전이를 동반한 악성 갈색세포종 환자의 I-131 MIBG 치료 시 흡수선량의 평가는 치료 효과 예측 및 치료용량 결정에 중요하다. 저자들은 갈색세포종 환자에서 I-131 MIBG 치료 후 감마카메라와 MIRD법을 이용하여 흡수선량을 평가하고자 본 연구를 시행하였다. 대상 및 방법: 종격동, 우측 신장 및 대동맥주위 림프절등에 전이가 확인된 악성 갈색세포종 환자에서 74 GBq I-131 MIBG 투여 후 양쪽 목옆에 37 MBq 와 74 MBq의 표준선원을 놓고 각각 0.5, 16, 24, 64, 145시간에 감마카메라로 전 후면영상 얻었다. 배후방사능 보정과 불응시간 보정 그리고 감쇠 보정후 MIRD법을 이용하여 표적조직의 흡수선량을 구하였다. 결과: 병소 각각에서 약 $32{\sim}63$ Gy/74 GBq의 흡수선량을 얻었으나 완전관해에 필요한 $150{\sim}200$ Gy에는 도달하지 못하였다. 치료 1달 후 X선 전산화 단층촬영상에서 병소의 감소를 확인하였고 치료 전과 비교한 I-123 MIBG 영상에서 MIBG 섭취감소를 확인하였다. 결론: 갈색세포종 환자에서 I-131 MIBG 치료 후 치료용량결정 및 치료계획을 수립하는 데 있어서 흡수선량평가가 필요하며 본 연구에서처럼 감마카메라와 MIRD법을 이용한 방법은 보다 간편하게 흡수선랑을 평가할 수 있어 임상적인 환경에서 유용할 것으로 여겨진다. 앞으로 본 연구에서 얻은 흡수선량의 정확성을 검증하고, 보다 많은 수의 환자에 적용하여 흡수선량과 치료 효과와의 관계를 규명하는 연구를 하여야 할 것이다.

  • PDF

광자선에 의한 민조사면 경계영역의 선량분포 (Peripheral Dose Distributions of Clinical Photon Beams)

  • 김진기;김정수;권형철
    • 한국의학물리학회지:의학물리
    • /
    • 제12권1호
    • /
    • pp.71-77
    • /
    • 2001
  • 방사선조사면의 가장자리는 반음영 영역으로 선량변화가 급격한 부분이다. 이러한 부분은 메가볼트 광자선 영역의 조사면에서 선원크기, 콜리메이터, 차폐불럭, 보조기구 그리고 내부산란선에 의한 것으로 알려져 있다. 본 연구에서는 기준조사면 경계 영역의 선량특성을 확인하고 선험적인 이론적 관계식으로 비교하여 치료시스템 조사면의 특성을 알고자 하였다. 조사면 경계영역의 주변선량분포를 깊이와 중심축으로부터 거리의 함수로서 구성하여 6MV 광자선에 의한 민조사면 경계영역의 주변선량분포를 측정하고 이를 선험적인 함수분포와 비교하였다. 3차원 물 팬톰으로 조사면 가장자리 영역의 주변선량분포를 측정하고 이를 선험적인 함수값과 비교하여 측정치와 근접한 함수방법을 알아보았다. 반도체 검출기와 전리함으로 최대선량점, 5 cm , 10 cm 깊이의 위치에서 측정값의 비를 이용하고, 유효 가장자리 영역은 80-20 % 를 선택하여 거리의 함수로 분석하였다. 깊이가 증가함에 따라경계영역의 선량폭이 증가하였다. 주변선량분포에서 검출기의 특성에 따라서 측정값과 함수값에 작은 차이가 있었다. 민조사면 경계영역 선량 분포함수를 비교하였다.

  • PDF

Ho-166-CHICO 치료 후 평면 영상을 이용한 방사선 흡수선량의 계산 (Radiation Absorbed Dose Calculation Using Planar Images after Ho-166-CHICO Therapy)

  • 조철우;박찬희;원재환;왕희정;김영미;박경배;이병기
    • 한국의학물리학회지:의학물리
    • /
    • 제9권3호
    • /
    • pp.155-162
    • /
    • 1998
  • 방사성 동위원소의 치료에 베타 방출 선원이 많이 이용되고 있다. 베타 방출 핵종 들은 투과력이 약해 방사선 도달거리 (range)가 짧아 병소내에 직접 주입하여 선택적으로 병소만을 조사하여 치료 의 효과를 얻을 수 있고 주변 정상 조직의 방사선 피폭을 줄일 수 있다. 최근 한국 원자력연구소의 원자로인 하나로를 이용하여 베타 입자 방출체인 Ho-l66 용액을 만들어 여기에 키토산 화합물을 표지 하였다. Ho-l66 은 고 에너지 베타 방출체라는 점과 일부 감마선이 방출됨으로써 감마카메라로 쉽게 영상을 얻을 수 있다는 장점이 있다. 본 연구에서는 감마카메라로 얻은 평면 영상을 이용하여 Ho-l66으로 치료한 부위와 그 주변의 정상 장기들의 방사선 홉수선량을 구하였다. 감마카메라는 Siemens 의 2중 head를 가진 Multispect2 시스템이 이용되었고, 콜리메이터는 medium energy, 최대 에너지는 80 keV, 창은 20%로 5분간 영상을 획득하였다. Ho-166 에 대한 투과인자 (transmission factor)는 환자 있을 때와 없을 때의 영상으로 관심영역의 ROIs 의 비로 구하였다 .3일간의 평면 영상으로 유효반감기를 구하여 Marinelli 공식과 MIRD 공식으로 베타입자에 대한 방사선 흡수선량을 구하였다. 감마선에 의한 흡수선량은 매우 적으므로 무시하였다. Transmission factor는 환자에 따라 다르지만 1110 MBq(30 mCi)을 주입하여 치료에 임한 간암 환자의 경우 간은 4.6, 비장은 4.65, 폐는 3.34, 뼈는 5.65 의 값을 보였다. 방사선 홉수선량은 tumor 에는 179.7, 정상간에는 16.3, 비장은 18.5, 폐에는 7.0, 뼈에는 9.0 Gy 가 각각 계산되었다. 이를 tumor dose 에 100%로 normalization 시킬 경우 정상간, 비장, 폐, 뼈에 각각 9.1, 10.3, 3.9, 5.0%로 분포되었음을 알았다. 본 연구를 통하여 tumor dose 뿐만이 아니고 주변 주요 위험장기 (critical organ) 에 대한 방사선 흡수선량을 전ㆍ후면 평면영상으로 얻을 수 있음을 보여 줌으로써 평면영상법을 이용한 dosimetry 의 가능성을 보았다. 또한 주변 주요 위험 장기의 한계선량에 맞는 주입할 양을 결정하는데 기초 자료가 될 수 있음을 보여준다.

  • PDF