This study searched fundamental basis of four-constitution medicine from the principle of "Yeokgyeong(易經)" that is scientific foundations of Dongmu(東武) Ijema(李濟馬)'s four-constitution medicine based on system of "Yeokgyeong(易經)" and looked into the principle of our-constitution medicine ontologically. That is to say, the translation of five phase(五行) that represented in "Hwangjenaegyeong(黃帝內經)" regulated that substance of five phase is spleen-earth(脾土). But four-constitution medicine mentions the substance as heart-earth(心土) in place of spleen-earth. Because of it's standpoint, the differences on meanings between spleen-earth and heart-earth on the substance of five-phase becomes motive to interpret scientific system of four-constitution medicine fundamental wrongly. For that reason, the research of this title is needed. The results was summarized as follows. First, in ontological view point of structure of four-constitution, five phase is substance and phenomenon, in other words it includes earth of unrevealed substance and wood, fire, metal and water of self-manifestation of existence. Second, in axiological view point, the four-constitution represent principles and contents of four virtues of human nature. And so the innate four virtues ontologically based on four-constitution of heaven. Therefore a human being is endowed innately benevolence, courtesy, justice, intelligence of four virtues. Third, the concept of greater and lesser of Eum(陰, yin) and Yang(陽, yang) in Dongmu(東武)'s four-constitution medicine is four-constitution in "Yeokgyeong(易經)". Greater principle(太極) and four-constitution is a relation of substance and phenomenon. Fourth, the origin and structure of four-constitution medicine includes the structure and principle of natural philosophical Eumyang and four-constitution, the human-centric theory and sciences of human nature and natural laws and medical experience of traditional oriental medicine and medical principle.
The aim of this study is to evaluate the patient's setup errors in TomoTherapy (Hi-Art II, TomoTherapy, USA) Bodyfix system (Medical Intelligence, Ele-kta, Schwabmuchen, Germany) pressure in the vacuum compression, depending on and were evaluated. Bodyfix immobilization system and vacuum pressure was compression applied to the patients who received Tomotherapy thoracic and abdominal area, 21 patients were selected and TomoTehpay treatment total 477 of MVCT images were obtained. The translational (medial-lateral: ML, anterior-posterior: AP, superior-inferior: SI directions) and rolling were recorded and analyzed statistically. Using Pearson's product-moment coefficient and One-way ANOVA, the degree of correlation depending on the different vacuum pressure levels were statistically analyzed for setup errors from five groups (p<0.05). The largest average and standard deviation of systematic errors were 6.00, 5.95 mm in the AP and SI directions, respectively. The largest average of random errors were 4.72 mm in the SI directions. The correlation coefficients were 0.485, 0.244, and 0.637 for the ML-Roll, AP-Vector, and SI-Vector, respectively. SI-Vector direction showed the best relationship. In the results of the different degree of vacuum pressure in five groups (Pressure range: 30~70 mbar), the setup errors between the ML, SI in both directions and Roll p=0.00 (p<0.05) were shown significant differences. The average errors of SI direction in the vacuum pressure of 40 mbar and 70 mbar group were 4.78 mm and -0.74 mm, respectively. In this study, the correlation between the vacuum pressure and the setup-errors were statistically analyzed. The fact that setup-errors in SI direction is dependent in vacuum pressure considerly setup-errors and movement of interal organs was identified. Finally, setup-errors, and it, based on the movement of internal organs in Bodyfix system we should apply more than 50 mbar vacuum pressure. Based on the results of this study, it is suggested that accuracy of the vacuum pressure and the quantitative analysis of movement of internal organs and the tumor should be studied.
Hyo Jung Park;Yongbin Shin;Jisuk Park;Hyosang Kim;In Seob Lee;Dong-Woo Seo;Jimi Huh;Tae Young Lee;TaeYong Park;Jeongjin Lee;Kyung Won Kim
Korean Journal of Radiology
/
v.21
no.1
/
pp.88-100
/
2020
Objective: We aimed to develop and validate a deep learning system for fully automated segmentation of abdominal muscle and fat areas on computed tomography (CT) images. Materials and Methods: A fully convolutional network-based segmentation system was developed using a training dataset of 883 CT scans from 467 subjects. Axial CT images obtained at the inferior endplate level of the 3rd lumbar vertebra were used for the analysis. Manually drawn segmentation maps of the skeletal muscle, visceral fat, and subcutaneous fat were created to serve as ground truth data. The performance of the fully convolutional network-based segmentation system was evaluated using the Dice similarity coefficient and cross-sectional area error, for both a separate internal validation dataset (426 CT scans from 308 subjects) and an external validation dataset (171 CT scans from 171 subjects from two outside hospitals). Results: The mean Dice similarity coefficients for muscle, subcutaneous fat, and visceral fat were high for both the internal (0.96, 0.97, and 0.97, respectively) and external (0.97, 0.97, and 0.97, respectively) validation datasets, while the mean cross-sectional area errors for muscle, subcutaneous fat, and visceral fat were low for both internal (2.1%, 3.8%, and 1.8%, respectively) and external (2.7%, 4.6%, and 2.3%, respectively) validation datasets. Conclusion: The fully convolutional network-based segmentation system exhibited high performance and accuracy in the automatic segmentation of abdominal muscle and fat on CT images.
The purpose of this study is to establish a reference for image acquisition for completion of a standard brain for diverse Korean population, and to develop a management system that saves and manage database of the acquired brain image and personal information of those who were tested. 3D MP-RAGE technique, which has excellent SNR and CNR and reduces the times for image acquisition, was selected for anatomical Image acquisition, and parameter values were obtained for the optimal image acquisition. The database management system was devised to obtain not only anatomical image data but also subjects' basic demographic factors, medical history, handedness inventory state-trait anxiety inventory, A-type personality inventory, self-assessment depression inventory questionnaires of Sasang Constitution Mini-Mental State Examination, intelligence test, and personality test via a survey questionnaire and to save and manage the results of the tests. In addition, this system was designed to have functions of saving, inserting, deleting, searching, and Printing of image da a and personal information of subjects, and to have accessibility to them as well as automatic connection setup with ODBC. This newly developed system may have major contribution to the completion of a standard brain of diverse Korean population in that it can save and manage their image date and personal information.
Journal of Physiology & Pathology in Korean Medicine
/
v.35
no.1
/
pp.22-27
/
2021
This study conducted a questionnaire for students of Pusan National University Graduate School of Korean Medicine who practiced using the Oriental Medicine Diagnosis System (ODS). From the questionnaire, this study investigated current state of application and perception of AI in Korean Medicine and explored the direction of ODS improvement and utilization. The survey questions consisted of six questions examining the satisfaction of the diagnostic expert system, five questions evaluating the availability of the diagnostic expert system, and six questions to predict the impact of AI on the Korean medicine community. The survey analysis showed high satisfaction with practice using ODS. On the other hand, the possibility of using ODS, especially in clinical use, was evaluated as relatively low compared to the satisfaction of the practice. Therefore, the overall impact of AI on the Korean medical community is not expected to be large. Although there are difficulties in standardization of clinical data due to the academic characteristics of Korean medicine, it is necessary to continue attempts to apply AI. By actively introducing educational tools using the latest AI techniques to the diagnosis experience and doctor-patient role in a practice, students will be able to increase their satisfaction with their practice and respond appropriately to the state-of-the-art medical environment.
Journal of the Institute of Electronics Engineers of Korea SC
/
v.41
no.2
/
pp.53-60
/
2004
This paper is the study for the automatic pulse-power diagnostic system to discriminate the four constitutions with the piezo-sensor module and digital signal processing hardware attached on the patient arm-neck and the statistical decision software instead of the fingers and intelligence of a traditional korean doctor. This system can be used as a important medical equipment because this automatically diagnostic system has shown the excellent performance of the 65∼76% correctness against the 50∼66% correctness which the general korean doctors with knowledge and experiences have shown. Additionally, this paper has discussed the excellent characteristics of the automatic discrimination algorithm of the four constitutions.
Purpose: Vital sign are used to help assess the general physical health of a person, give clues to possible diseases, and show progress toward recovery. Researchers are using vital sign data and AI(artificial intelligence) to manage a variety of diseases and predict mortality. In order to analyze vital sign data using AI, it is important to select and extract vital sign data suitable for research purposes. Methods: We developed a method to visualize vital sign and early warning scores by processing retrospective vital sign data collected from EMR(electronic medical records) and patient monitoring devices. The vital sign data used for development were obtained using the open EMR big data MIMIC-III and the wearable patient monitoring device(CareTaker). Data processing and visualization were developed using Python. We used the development results with machine learning to process the prediction of mortality in ICU patients. Results: We calculated NEWS(National Early Warning Score) to understand the patient's condition. Vital sign data with different measurement times and frequencies were sampled at equal time intervals, and missing data were interpolated to reconstruct data. The normal and abnormal states of vital sign were visualized as color-coded graphs. Mortality prediction result with processed data and machine learning was AUC of 0.892. Conclusion: This visualization method will help researchers to easily understand a patient's vital sign status over time and extract the necessary data.
Journal of the Korean Academy of Child and Adolescent Psychiatry
/
v.27
no.1
/
pp.39-47
/
2016
Objectives: The aim of this study was to examine the association between current suicidal or violent behavior and deficits of specific neurocognitive variables in child and adolescent inpatient samples diagnosed with mood disorder. Methods: A retrospective review of the charts of mood disorder patients hospitalized at Samsung Medical Center between April 2004 and April 2015 was conducted. Child and adolescent patients aged between 10 and 18 years old and those who finished neurocognitive function testing during their hospitalization were included. Among them patients whose full scale IQ was between 85 and 115 were selected (N=111). Participants were first divided into two age-groups-group Y ($10{\leq}age{\leq}15$, N=54) and group O ($16{\leq}age{\leq}18$, N=57)-because neurocognitive function test tools were different according to age [Wechsler Intelligence Scale for Children (WISC) for 10 to 15-year-old patients, Wechsler Adult Intelligence Scale (WAIS) for 16 to 18-year-old patients]. They were then divided according to their suicidal or violent behavior-non suicidal/violent group (NG), suicidal group (SG), violent group (VG), and both suicidal/violent group (BG). The Child Behavior Checklist (CBCL) was checked for measurement of participants' behavior and the Gordon Diagnostic System was checked for measurement of their attention efficiency. Kruskal-Wallis Test and Tukey test was used to determine the differences in neurocognitive function between groups. Results: O-SG patients showed lower scores on the comprehension subscale of WAIS-III than O-NG patients (${\chi}^2=8.454$, p=.015). O-VG patients showed lower scores on the block design subscales of WAIS than O-SG patients (${\chi}^2=7.496$, p=.024). Y-VG patients showed higher scores in aggressive behavior, externalizing problems, and total problems scores of CBCL. Conclusion: This study showed relationship between specific neurocognitive deficits and suicidal or violent behavior. These relationships were significant in relatively older adolescents.
Objective : This study assessed ChatGPT, an artificial intelligence system based on a large language model, for its ability to pass the National Korean Occupational Therapy Licensure Examination (NKOTLE). Methods : Using NKOTLE questions from 2018 to 2022, provided by the Korea Health and Medical Personnel Examination Institute, this study employed English prompts to determine the accuracy of ChatGPT in providing correct answers. Two researchers independently conducted the entire process, and the average accuracy of both researchers was used to determine whether ChatGPT passed over the 5-year period. The degree of agreement between ChatGPT answers of the two researchers was assessed. Results : ChatGPT passed the 2020 examination but failed to pass the other 4 years' examination. Specifically, its accuracy in questions related to medical regulations ranged from 25% to 57%, whereas its accuracy in other questions exceeded 60%. ChatGPT exhibited a strong agreement between researchers, except for medical regulation questions, and this agreement was significantly correlated with accuracy. Conclusion : There are still limitations to the application of ChatGPT to answer questions influenced by language or culture. Future studies should explore its potential as an educational tool for students majoring in occupational therapy through optimized prompts and continuous learning from the data.
Juhyeong Kang;Yeojin Kim;Jiseon Yang;Seungwon Chung;Sungeun Hwang;Uran Oh;Hyang Woon Lee
International journal of advanced smart convergence
/
v.12
no.3
/
pp.89-103
/
2023
Obstructive sleep apnea (OSA) is one of the most prevalent sleep disorders that can lead to serious consequences, including hypertension and/or cardiovascular diseases, if not treated promptly. Continuous positive airway pressure (CPAP) is widely recognized as the most effective treatment for OSA, which needs the proper titration of airway pressure to achieve the most effective treatment results. However, the process of CPAP titration can be time-consuming and cumbersome. There is a growing importance in predicting personalized CPAP pressure before CPAP treatment. The primary objective of this study was to optimize the CPAP titration process for obstructive sleep apnea patients through EEG feature engineering with machine learning techniques. We aimed to identify and utilize the most critical EEG features to forecast key OSA predictive indicators, ultimately facilitating more precise and personalized CPAP treatment strategies. Here, we analyzed 126 OSA patients' PSG datasets before and after the CPAP treatment. We extracted 29 EEG features to predict the features that have high importance on the OSA prediction index which are AHI and SpO2 by applying the Shapley Additive exPlanation (SHAP) method. Through extracted EEG features, we confirmed the six EEG features that had high importance in predicting AHI and SpO2 using XGBoost, Support Vector Machine regression, and Random Forest Regression. By utilizing the predictive capabilities of EEG-derived features for AHI and SpO2, we can better understand and evaluate the condition of patients undergoing CPAP treatment. The ability to predict these key indicators accurately provides more immediate insight into the patient's sleep quality and potential disturbances. This not only ensures the efficiency of the diagnostic process but also provides more tailored and effective treatment approach. Consequently, the integration of EEG analysis into the sleep study protocol has the potential to revolutionize sleep diagnostics, offering a time-saving, and ultimately more effective evaluation for patients with sleep-related disorders.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.