Classical and inverse estimation methods are two well known methods in statistical calibration problems. When there are outliers, both methods have large MSE's and could not estimate the input value correctly. We suggest median calibration estimation based on the LD-statistics. To investigate the robust performances, the influence function of the median calibration estimator is calculated and compared with other methods. When there are outliers in the response variables, the influence function is found to be bounded. In simulation studies, the MSE's for each calibration methods are compared. The estimated inputs as well as the performance of the influence functions are calculated.
This study has developed a new liquid crystal calibration technique using Neural networks with median filtering and applied this technique to heat transfer measurements. To verify the validity of this new measurement technique, the local Nusselt numbers on a flat plate surface subjected to an axisymmetric impinging jet were measured and compared with the results by the conventional Hue-temperature calibration technique under the same conditions. Because the Neural networks predict the non-linear relations between temperatures and corresponding R, G, B values, Neural networks-median filtering calibration technique can utilize a much wider color band in the experiment than the Hue-temperature calibration technique, resulting in a significant reduction in the experimental time.
This paper presents a camera calibration method using several images for three dimensional measurement applications such as stereo systems, mobile robots, and visual inspection systems in factories. Conventional calibration methods that use single image suffer from errors related to reference point extraction in image, lens distortion, and numerical analysis of nonlinear optimization. The camera parameter values obtained from images of same camera is not same even though we use same calibration method. The camera parameters that are obtained from several images of different view for a calibration target is usaully not same with large error values and we can not assume a special probabilistic distribution when we estimate the parameter values. In this paper, the median value of camera parameters from several images is used to improve estimation of the camera values in an iterative step with nonlinear optimization. The proposed method is proved by experiments using real images.
본 논문에서는 적절한 패턴의 입력 영상과 고속 중간 값 필터를 이용하여 집적 영상에서 빠르고 정확한 렌즈 배열의 격자 검출 방법을 제안한다. 렌즈 배열의 격자를 검출하기 위해서 수직, 수평 방향의 에지 영상이 필요하다. 이를 위해, 이전의 잘 알려진 격자 검출 방법은 1차원 중간 값 필터를 사용한다. 하지만 이 방법은 속도가 느리고 중간 값 필터 크기를 결정하는데 어려움이 발생한다. 이를 극복하기 위해, 본 논문에서는 binary counting방법으로 중간 값을 구함으로써 속도를 개선하고자 한다. 또, 에지를 잘 검출 할 수 있는 캘리브레이션 패턴 영상을 제안하여 정확도를 향상 시킨다. 실험을 통해 제안하는 방법이 기존의 방법보다 집적 영상에서 렌즈 배열의 격자를 검출할 때 우수하게 적용될 수 있음을 보여주었다.
Journal of the Korean Data and Information Science Society
/
제19권3호
/
pp.995-1006
/
2008
This article deals with the one-sided hypothesis testing problem in inverse Gaussian distribution. We propose Bayesian hypothesis testing procedures for the one-sided hypotheses of the shape parameter under the noninformative prior. The noninformative prior is usually improper which yields a calibration problem that makes the Bayes factor to be defined up to a multiplicative constant. So we propose the objective Bayesian hypothesis testing procedures based on the fractional Bayes factor, the median intrinsic Bayes factor and the encompassing intrinsic Bayes factor under the reference prior. Simulation study and a real data example are provided.
Spectroscopic measurement method based on visible and near-infrared wavelengths was prominent technology for rapid and non-destructive evaluation of internal quality of fruits. Reflectance measurement was performed to evaluate firmness, soluble solid content, and acid content of truss tomatoes by hyperspectral reflectance imaging system. The Vis/NIR reflectance spectra was acquired from truss tomatoes sorted by 6 ripening stages. The multivariable analysis based on partial least square (PLS) was used to develop regression models with several preporcessing methods, such as smoothing, normalization, multiplicative scatter correction (MSC), and standard normal variate (SNV). The best model was selected in terms of coefficient of determination of calibration ($R_c^2$) and full cross validation ($R_{cv}^2$), and root mean standard error of calibration (RMSEC) and full cross validation (RMSECV). The results of selected models were 0.8976 ($R_p^2$), 6.0207 kgf (RMSEP) with gaussian filter of smoothing, 0.8379 ($R_p^2$), $0.2674^{\circ}Bx$ (RMSEP) with the mean of normalization, and 0.7779 ($R_p^2$), 0.1033% (RMSEP) with median filter of smoothing for firmness, soluble solid content (SSC), and acid content, respectively. Results show that Vis / NIR hyperspectral reflectance imaging technique has good potential for the measurement of internal quality of truss tomato.
신뢰성 있는 통행시간 예측을 위해 DSRC로부터 수집된 통행시간에서의 이상치(outlier) 필터링은 필수이다. 통행시간 예측을 위해 사용되는 보편적 기법인 TRANSGUIDE는 특정 분석 시간동안 통행시간의 변동이 크게 발생하는 조건에서 수집데이터의 이상치 제거를 효율적으로 처리하지 못하는 문제점이 존재한다. 이에 본 연구에서는 TRANSGUIDE의 한계점 을 보완할 수 있는 알고리즘을 제안하고자 한다. TRANSGUIDE가 특정 분석 시간대 충분한 데이터 관측이 어려울 경우 Median Absolute Deviation(MAD)를 이용하여 이상치 제거를 위한 새로운 유효 분석 영역을 설정하였다. 새로운 분석 영역 설정 후 특정 시간대 교통 조건하에서 최대 허용 가능한 이상치를 고려한 변수 ${\alpha}$, ${\beta}$를 제안하였다. 변수 ${\alpha}$, ${\beta}$를 추정하기 위해 과거 데이터와 도로 구간의 특성을 반영하였다. 개발된 알고리즘은 수도권 일반국도 3호선, 2013년 1월 1달간 DSRC 데이터가 존재하는 다차로 일반국도에 적용하였다. 누적상대도수를 이용하여 모형의 정산 수행 후 성능에 대해 정량적 평가를 수행하였다. 개발된 알고리즘은 기존의 TRANSGUIDE가 특정 조건, 즉 일정 분석 시간동안 교통 조건이 급하게 변동되는 구간에서 이상치 제거에 취한한 점을 보완하는 것으로 판단되었다. TRANSGUDIDE가 특정 조건에서 통행시간 예측이 어려울 경우 본 개발 알고리즘은 활용될 것으로 판단한다.
본 논문에서는 도심 영상에 대해 맨하탄 좌표계를 추정하는 합성곱 신경망(Convolutional Neural Network) 기반의 시스템을 제안한다. 도심 영상에서 맨하탄 좌표계를 추정하는 것은 영상 조정, 3차원 장면 복원 등 컴퓨터 그래픽스 및 비전 문제 해결의 기본이 된다. 제안하는 합성곱 신경망은 GoogLeNet[1]을 기반으로 구성한다. 합성곱 신경망을 훈련하기 위해 구글 스트리트 뷰 API로 영상을 수집하고 기존 캘리브레이션 방법으로 맨하탄 좌표계를 계산하여 데이터셋을 생성한다. 장면마다 새롭게 합성곱 신경망을 학습해야하는 PoseNet[2]과 달리, 본 논문에서 제안하는 시스템은 장면의 구조를 학습하여 맨하탄 좌표계를 추정하기 때문에 학습되지 않은 새로운 장면에 대해서도 맨하탄 좌표계를 추정한다. 제안하는 방법은 학습에 참여하지 않은 구글 스트리트 뷰 영상을 검증 데이터로 테스트하였을 때 $3.157^{\circ}$의 중간 오차로 맨하탄 좌표계를 추정하였다. 또한, 동일 검증 데이터에 대해 제안하는 방법이 기존 맨하탄 좌표계 추정 알고리즘[3]보다 더 낮은 중간 오차를 보이는 것을 확인하였다.
Lee, Byung Min;Chang, Jee Suk;Cho, Young Up;Park, Seho;Park, Hyung Seok;Kim, Jee Ye;Sohn, Joo Hyuk;Kim, Gun Min;Koo, Ja Seung;Keum, Ki Chang;Suh, Chang-Ok;Kim, Yong Bae
Radiation Oncology Journal
/
제36권2호
/
pp.139-146
/
2018
Purpose: IBTR! 2.0 nomogram is web-based nomogram that predicts ipsilateral breast tumor recurrence (IBTR). We aimed to validate the IBTR! 2.0 using an external data set. Materials and Methods: The cohort consisted of 2,206 patients, who received breast conserving surgery and radiation therapy from 1992 to 2012 at our institution, where wide surgical excision is been routinely performed. Discrimination and calibration were used for assessing model performance. Patients with predicted 10-year IBTR risk based on an IBTR! 2.0 nomogram score of <3%, 3%-5%, 5%-10%, and >10% were assigned to groups 1, 2, 3, and 4, respectively. We also plotted calibration values to observe the actual IBTR rate against the nomogram-derived 10-year IBTR probabilities. Results: The median follow-up period was 73 months (range, 6 to 277 months). The area under the receiver operating characteristic curve was 0.607, showing poor accordance between the estimated and observed recurrence rate. Calibration plot confirmed that the IBTR! 2.0 nomogram predicted the 10-year IBTR risk higher than the observed IBTR rates in all groups. High discrepancies between nomogram IBTR predictions and observed IBTR rates were observed in overall risk groups. Compared with the original development dataset, our patients had fewer high grade tumors, less margin positivity, and less lymphovascular invasion, and more use of modern systemic therapies. Conclusions: IBTR! 2.0 nomogram seems to have the moderate discriminative ability with a tendency to over-estimating risk rate. Continued efforts are needed to ensure external applicability of published nomograms by validating the program using an external patient population.
In this study, it was proposed that a method of setting the target water quality for TOC using the watershed model and the load duration curves to manage non-biodegradable organics in the total water load management system. To simulate runoff and water quality of the watershed, the HSPF model is used which is appropriate for urban and rural areas. Additionally, the load duration curve is used to reflect the variable water quality correlated with various river flow rates in preparing the TMDL plans in the U.S. First, the model was constructed by inputting the loads calculated from the pollutant sources in 2015. After the calibration and verification process, the water quality by flow conditions was analyzed from the BOD and TOC simulation results. When the BOD achieved the target water quality by inputting the target year loads for 2020, the median and average values of TOC were proposed for the target water quality. The provisional method of TOC target water quality for the management of non-biodegradable organics, which is one of the challenges of the total water load management system, was considered. In the future, it is expected to be used as basic data for the conversion of BOD into TOC in the total water load management system.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.