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Calibration by Median Regression!
Jinsan Yang! and Seung-Ho Lee?

ABSTRACT

Classical and inverse estimation methods are two well known methods in
statistical calibration problems. When there are outliers, both methods have
large MSE’s and could not estimate the input value correctly. We sugest
median calibration estimation based on the LD-statistics. To investigate
the robust performances, the influence function of the median calibration
estimator is calculated and compared with other methods. When there
are outliers in the response variables, the influence function is found to be
bounded. In simulation studies, the MSE’s for each calibration methods are
compared. The estimated inputs as well as the performance of the influence
functions are caleulated.

Key Words: calibration; influence function; break down point; outlier; robustness;
median calibration; LD estimation

1. INTRODUCTION

There were several approaches on the statistical calibration problem. The
classical method by Eisenhart(1939) is setting up the usual regression model and
inverting that model for calibration. On the other hand, the inverse estimator is
setting a direct regression model by switching the response variable and regres-
sors.(Krutchkoff(1967)). Based on the Monte Carlo studies, Krutchkoff concluded
that the MSE(Mean Squared Error) of the classical estimator is uniformly greater
than that of the inverse estimator. But in fact, this is true only when the esti-
mating value is near the center of the input variables.

When there are outliers in the data, the corresponding calibration model can
be deeply influenced by these outliers. Since the inferences based on the least
squares methodology turned out to be sensitive to the existance of even one sin-
gle outlier, it becomes important to find a stable (i.e. robust) procedure against
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to these outliers. Statistics which are robust against traditional assumptions on
the underlying population (normality, no gross errors, symmetricity. etc) are
called robust statistics. To improve the robustness in the calibration problems,
we propose the median calibration based on the LD(Least Distance) estimation
method.

2. MEDIAN CALIBRATION ESTIMATION AND
INFLUENCE FUNCTION

Consider the following linear models:

yi-—-a:iﬁ’—i—e,-, i=1,2,...,n (21)

Zj=$0,3+ej., i=1.L2,...,m (22)

where z; is the " input, y; is the i** output with p-components, § is the re-
gression parameter in RP, ¢;,e;’s are i.i.d. random errors , z; is the 4% output
corresponding to the unknown fixed input zo; z; and ¢; are independent each
other. For the controlled calibration, z;’s are fixed and in that case, outliers
occur only in y; or z;’s.

Let G(z,y) be the joint distribution function of (z,y) and H(z) be the
distribution function of z; under the input zp. Denote G, (z,y) and Hp(z)
for the empirical distribution function of G(z,y) and H(z) respectively when
(z1,%1), (z2,92)s - - -, (Zny Yn) 5 21|Z0, 22|T0, - . - , 2m|To are observed.

Let B(G) be the LD-estimate of § when G is the underlying distribution
function. It can be shown that under certain regularity conditions, 8(G) exists,
is unique and a functional on a set of distribution functions.(See Huber(1981)).
Assume $(G) # 0. The median calibration estimation in (2.1)-(2.2) can be
obtained by minimizing the following functional form

[ 12 = 38(Ga) B (o) (23)

We define the median calibration estimator z(G; H) = % for z¢ in (2.2) as follow-
ings.

Definition 2.1. z(G; H) is the estimator of x salisfying

[1z= s mp@NarE) = min [1z-sp@ldre) 24



Median Calibration 267

Remark 2.1. Here z(G; H) is defined in the classical calibration model (2.1)-
(2.2). It can be defined similarly for the case of the inverse calibration model.
For the univariate case, z(G; H) becomes the median of z’s devided by 8(G) in
(2.4).

The influence function(Hampel(1974)) was widely adopted for measuring the in-
fluence of outliers to the statistical estimation. Define distribution functions G,
and H, by

Ge(z,y) = (1 — €)G(z,y) + e7(Xo, Vo) (2.5)

H(z) = (1 —e)H(z) + en(Zp) (2.6)

where ¢ is a small fraction of positive number less than 1. 7 and 7 are point
masses concentrated on the contaminated data (Xo,Yp) and Zy respectively. The
influence function for z(G; H) is

IF (X0, Y, Z0;8) = 20T} (27)
dé e=0
If
H(z=zp(G@)) =0forallz € R (2.8)

then z(G; H) can be defined by taking the derivative of (2.4) w.r.t. z;

d / / —p'(z — zf)

— | |z = zB8(G)||dH(2) = | ———=dH(z) =0 2.9

7 | Iz =aB@aE ) = [ =P an(e) (29)
For the sake of simplicity, let’s denote 8y = 5(G), 8 = B(Ge¢), zo = 2(G; H), 2. =
z(Ge; He).
With these notations, the influence function for the median calibration estimation
can be obtained.

Theorem 2.1. If condition (2.8) holds with Zy # zo0Gy ,then the influence func-
tion of the median calibration estimation for zg is given by

IFp(Xo, Yo, Zo; &)
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1 B5(Zo — zofo) Yy — Xofo

R vt e A ¥ L
- (2.10)
Bosign(Zo — o) — ZEheaefe) Xosign(Yo — Xofo)
{ 2633 h(z0fo) p=1)
(where
0 2 — 200)]?
= [ 4o 211

M, = /,30 — z9f0)x0(2 — z0fo) dH(z /| — 220f0 H(z) (2.12)

|z = zofoll? |z — Ioﬁo”

(y — 2Bo)(y ~ wﬁo)']

2 L ipxp) —
ly — x|
M=/ dG 2.13

TV —cpol (2.13)

,e(y) is a density function of y, h(z) is a density function of z.)

Proof: Let’s rewrite (2.9) w.r.t. H, and G,

L (1 g [Belz—2B) BL(Z0 — zBe)
iz | Ve oG = (- 0) [ R + Sz
(2.14)

In order to use (2.14), we need to show that Zy — z, # 0 for every € in (0, 1).
Suppose G is the LD-estimate at G, and denote z1 = z¢, 2z = xo + t(z1 —
zg) for t € (0,1].

Set

a(t) = / llz = 240 || dHe. (2.15)

Suppose Zg = 18- It is clear that a(t) is convex and takes minimum value at
t =1 with 28 <0 for t € [0,1).
Rewrite d—?}tﬂ as

da(t) _ [ (z0 — 21)Be(z — efe)

dt ”Z( - xtl@EISﬂ (
_ e I 2 —
= U=9] = 28]

dH,
(2.16)

=Pe) 48 _ ez ~ 1)
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On the other hand, [ ||z — z:0.||dH is convex w.r.t. ¢ and has a minimum at
t =0 with

_ ("1;0 I ﬁe(z ztﬁe)
dt/]]z zeBe||dH = / T ER > 0 e (0,1] (217

By the strong consistency results of the LD-estimate, we can choose ¢ small
enough so that ﬂdtﬂ > 0 for t € (0,1). Since z; = z(H; G,), we have a contra-
diction to the convexity of a(t). Now, the result follows by differentiating (2.14)
implicitly w.r.t. e. 4

Remark 2.2. If we denote B(G) for the least squares estimation with My, My
and M given as above the influence function becomes

Bo(Zo — zofo) 1 X0 (Yo — Xof50)
1Zo — ool [ 22dG

The influence due to the point (X, Yp) which appears in the second term shows a
strong sensitivity to both output and input variables. For the median calibration
estimation, the influence due to the output variable is bounded in the form of,

Yo — Xobo
1Yo — XoBol|

B(Zy — z0fo)

| Zo — zolol|
variable conditional to z. So in the case of median calibration, the influence of

IFp5(Xo, Yo, Zo; &) = MY + MM~ b (2.18)

(2.19)

In (2.10), the term represents the effect of outliers in the output

outliers in the prediction stage as well as in the conditional output variables is
bounded.

Remark 2.3. When the outliers exist in the output variable only, the cor-
responding influence functions of the median, classical and inverse calibration
methods are given as followings:

- g (Yo — zf)
IFpp(Yo) = -3 B EeGh A Yo~ 2fo] dF(z) (2.20)
IFor(Yy) = ﬁ%%@(y Ez — BoEz?) (2.21)

Ez
IFinv(Yo) = W(%Em —Y0Yg) (2.22)
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Note that the influence function is bounded in the median calibration. For the
classical calibration, it is represented as a linear term ” YpEz ” and for the inverse
calibration, as a quadratic term ” YgEz — 'ng02 7,

Usually, the input data is not random, so in many practical cases we have a
bounded influence function for the median calibration estimation. This can be
summarized in the following Theorem.

Theorem 2.2. Suppose there are no outliers in the design matriz. Then the
influence function of £ = o(G; H) is given by

[ﬂ%;%gfﬁ K] (p>1)

IF (Yo, Zo; &) = 220on(zas (2.23)
Bosign(Zy — zofo) ~ E”(SL Sent K (p=1)
263h(z0B0) "
where My, My, M are given as before and
(Yo ~ zf)
K= / ——dF 2.24
%o - ofall ") 229
Proof: The defining relation of 3, is in this case:
:L'/BE ( z0)
(1- ——dG Sl ol W 0 (2.25)
) [ T +e [ TR e -
The result. follows similarly as in Theorem 2.1 using (2.25). O

3. GLOBAL ROBUSTNESS OF MEDIAN CALIBRATION
ESTIMATION

For the measurement of the global robustness, Hampel(1971) introduced the
break down point by measuring the maximum portion of contamination without
breaking down the corresponding estimator. Let ¥ and T be sets of distribution
functions for (z,y) and 2|z respectively. We define

Ae={GGe(z,y) = (1 - OG(z,9) + P(z,y), P €L, 0<e<1}  (31)

Qe={H;H(z)=(1—€e)H(2) +eQ(2),Q €Y, 0 <e <1} (3.2)
The breakdown point ¢, is defined as
ey = max {¢;z(€) < oo} ,where z(e) = Sup {||z(Ge; He) — z(G; H)||} (3.3)

EqilE
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Theorem 3.1. Let ¥ and T be sets of distributions including all the potential
contaminated distributions. Then the median calibration estimation has 0 break-
down point.

Proof: Suppose there is an ¢y > 0 such that z(e) < oo. We will derive a
contradiction. Choose a sequence of (G, He,) such that

(Gepr Heo) = (1 — €0)(Glz, y), H(2)) + eor (X, Y5 280y (3.4)

(n) ’
Let 11 = EQ—Y(O}%?_YO, Yo =(n,n,...,n), B = X—}g-y and zg = a:(Ggg),He(,?)). Set
Ty =z + t(z1 — z2) for t € (0,1]. Define ’

oft) = [ Y2 = wiBilan, (3.5
The derivative of a(t) w.r.t. ¢ becomes,

day(t) (32 — 21)Be(z ~ )
dt ”z - mtﬁe”

=(l-¢)

dH — €||(z2 — 1) e (3.6)

Choose a sequence of {X(gn), Yon); Z(g")} such that for n large enough,

€ np ‘

By Schwartz’s inequality, (3.6) becomes,

Bl < (1~ €) [log - 21||BelldH — €l (w2 — 22)Be]
S Sy ~ et (L +o(1)) (3.8)
< 0

Since a(t) is convex w.r.t. £, and has a minimum at ¢ = 0, we have a contradiction.
.|

The above theorem indicates that on the global basis, the maximum portion
of contaminated data in the median calibration becomes 0 and no part of the
data is allowed to be contaminated. In view of infinitesimal basis, Theorem 3.1
results from non-robustness of the influence function w.r.t. the input variable.(See
Theorem 2.1). In the next theorem, we will show that the median calibration
retains its robust property when there is no outlier in the input variable.
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Theorem 3.2. If the marginal distribution of z in G(z,y) is F(z), the distri-
bution of the design matriz in (2.1), then the break down point of the median
calibration estimation is 1/2.

Proof: We will prove for 0 < € < 1/2. The case for 1/2 < € < 1 can be proved
similarly.
Suppose ng) (z,y) be an e-contaminated distribution around G(z,y),

G =(1-e)G+eB,, P,c¥ forn=12,... (3.9)
where ¥ has F(z) as a marginal distribution of z.
Let
zo = z(G; H), T = (G H,) (3.10)
Ty =m0+ (21 —2)t, 0<t<1 (3.11)
Define
aft) = / Iz — afeldH,  with 6, = B(G™). (3.12)

Since a(t) is convex, it should have a minimum at ¢ = 1. Hence a(t) < 0 on
tel0,1).
By taking the derivative of a(t),

da(t) / (z1 — 20)Be (2 — zefe) (z1 — %0)Bi(Z0 — 1)
=(1-¢ < dH + ¢ £ 3.13
a =179 e — el e
Now assume ||z1|| — oo as n becomes large.

By the fact that the marginal distribution of z is F'(z) and by the robustness of

Be,
. (zo — 21)BL(2 — z40e)
A o — 20)Belll (7 = 2o
It follows that,
9all) 51— [l - 20)BeldH — eli(mo — z0)B]|

dat
> (1-20)(m0 — 21)Be| + (1) (3.15)

>0 as n — oo

=1 asn—o0 (3.14)

which leads a contradiction to the convexity of a(t). O
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4. SIMULATION RESULTS

In simulation for MSE (Mean Squared Errors), 20 data points are generated
at input value of £ = —1, 1 with model parameters 8y = 0,8, = 0.5 and 100 rep-
etitions. Similar results can be obtained for other values of parameters. In this
section, we denote each calibration estimations of input value based on the in-
verse, classical and median calibration methods as inverse, classical and LD(Least
Distance) estimators respectively. The performance of classical, inverse and LD
estimators are compared by measuring their MSE. Since finding the LD calibra-
tion estimator is same as solving the corresponding Linear Programming problem
(see, for example, R.D.Armstrong et al (1979)), we used SAS/OR and SAS Macro
in the calculation of the LD estimator.

When there are no outliers in the data set, both LD and classical estimators
show smaller MSE than the inverse estimator except near the centor of the input
variable.(Figure 4.1). This result corresponds to the asymptotic MSE expression
for classical and inverse estimators (Lwin and Maritz(1982)). On the other hand
when there is an outlier in the data set, the robust feature of LD estimator
can be seen. (Figure 4.2). We use the empirical expression of influence function:
IF,(Yy) = n(&n+1—%n) for plotting influence functions of three estimators (where
Yy is the outlier in the output ranging from —30 to 30, & is the estimation of
the input value at x = 1). Figure 4.3 shows simulated influence functions of each
estimators. The LD estimator is plotted as a flat horizontal line indicating its
robustness against the output outlier. But the classical and inverse estimators
show linear and quadratic trend according to remark (2.3) in section 2. When
the magnitude of the outlier becomes larger, the inverse estimator seems to be
more sensitive due to its quadratic trend. Similar plots are obtained for the case
of error distributions other than normal.

For the real data, the comparisons of the three estimators are made in table
4.1-2. The data used were the water content in soil specimens (Aitchison and
Dunsmore(1975, pl182)). Here the precise input measurements were made in
laboratory and the outputs were observed by on cite direct measurements. For 16
observations of data, each accurate zg is estimated by various estimation methods
with corresponding output readings and as a measure of the performance of each
estimator, the average of the squared deviation are calculated.

When there are no outliers in the data (Table 4.1), the inverse estimator has
smallest value but the differences between the three estimators are not significant.
However if we increased the seventh output data by three times as an outlier,
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the LD estimator still shows good estimations while the other estimators show
significant draw backs.(Table 4.2). The inverse estimator shows poor performance
for observations away from the center of input variable (obs.1,2 13,14,15,16),
while for the classical estimator, large deviations are observed around the center
of the z variable (obs.4,5,6). The large deviation of the inverse estimator for the
observations far from the center w.r.t. the input variables represents its quadratic
trend.
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Figure 4.1: The comparison of MSE when there is no outlier in the output data.
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INFLUENCE FUNCTION
DISTRIBUTION : NORMAL

T

Figure 4.2: The comparison of MSE when there is an outlier in the output data.
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|
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Figure 4.3: The comparison of influence functions under the normal error distri-

bution.
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Table 4.1: The estimation of the water content of soil by various predictors with
no outliers in the output.

OUTLIER : NO
Measurements on water content Prediction by various predictors
of soil specimens

OBS Y X Xin XeoL Xwp
1 10.6 12.8 16.3027 15.8360 14.4911
2 10.1 16.1 15.6828 15.1870 13.8076
3 12.6 18.8 18.7827 18.4317 17.2253
4 12.7 19.3 18.9067 18.5615 17.3620
5 11.4 19.6 17.2947 16.8743 15.5848
6 15.8 21.6 22.7506  22.5849 21.6000
7 15.2 23.1 22.0066 21.8061 20,7797
8 17.8 24.1 25.2305 25.1806 24.3342
9 19.7 26.1 27.5865 27.6465 26.9316
10 19.0 27.5 26.7185 26.7380 25.9747
11 20.2 27.6 28.2065 28.2955 27.6152
12 24.3 33.1 33.2903 33.6167 33.2203
13 23.7 35.3 32.5464 32.8380 32.4000
14 24.5 36.2 33.5383  33.8763 33.4937
15 29.2 39.8 39.3662 39.9762 39.9190
16 31.8 39.8 42,5901  43.3507 43.4734

Table 4.2: The estimation of the water content of soil by various predictors with

an outlier in the output.
OUTLIER : y * 3 (OBS = 7)

Measurements on water content Prediction by various predictors

of soil specimens
OBS Y X Xin XcrL Xip
1 10.6 12.8 20.8264 11.6338 14.4832
2 10.1 16.1 20.5516 10.8978 13.8000
3 12.6 18.8 21.9252 14.5781 17.2158
4 12.7 19.3 21.9801 14.7253 17.3525
5 11.4 19.6 21.26569 12.8115 15.5762
6 15.8 21.6 23.6834 19.2889 21.5881
7 15.2 23.1 23.3537 18.4057 20.7683
8 17.8 241 24.7822  22.2332 24.3208
9 19.7 26.1 25.8261  25.0303 26.9168
10 19.0 27.5 26.4415  23.9998 25.9604
11 20.2 27.6 26.1008 25.7663 27.6000
12 24.3 33.1 28.3535  31.8021 33.2020
13 23.7 35.3 28.0238 30.9188 32.3822
14 245 36.2 28.4634  32.0965 33.4752
15 29.2 30.8 31.0457  39.0156 39.8970

16 31.8 39.8 32.4742  42.8432 43.4495
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