• 제목/요약/키워드: media segmentation

검색결과 253건 처리시간 0.023초

MR 영상의 영역분할기반 웨이블렛 부호화방법 (Segmentation-based Wavelet Coding Method for MR Image)

  • 문남수;이승준;송준석;김종효;이충웅
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1997년도 춘계학술대회
    • /
    • pp.95-100
    • /
    • 1997
  • In this paper, we propose a coding method to improve compression efficiency for MR image. This can be achieved by combining coding and segmentation scheme which removes noisy background region, which is meaningless for diagnosis, in MR image. The wavelet coder encodes only diagnostically significant foreground regions refering to segmentation map. Our proposed algorithm provides about 15% of bitrate reduction when compared with the same coder which is not combined with segmentation scheme. And the proposed scheme shows better reconstructed image Qualify than JPEG at the same compression ratio.

  • PDF

Text Line Segmentation of Handwritten Documents by Area Mapping

  • Boragule, Abhijeet;Lee, GueeSang
    • 스마트미디어저널
    • /
    • 제4권3호
    • /
    • pp.44-49
    • /
    • 2015
  • Text line segmentation is a preprocessing step in OCR, which can significantly influence the accuracy of document analysis applications. This paper proposes a novel methodology for the text line segmentation of handwritten documents. First, the average width of the connected components is used to form a 1-D Gaussian kernel and a smoothing operation is then applied to the input binary image. The adaptive binarization of the smoothed image forms the final text lines. In this work, the segmentation method involves two stages: firstly, the large connected components are labelled as a unique text line using text line area mapping. Secondly, the final refinement of the segmentation is performed using the Euclidean distance between the text line and small connected components. The group of uniquely labelled text candidates achieves promising segmentation results. The proposed approach works well on Korean and English language handwritten documents captured using a camera.

수리 형태론을 이용한 3차원 비디오 분할 (3D Video Segmentation using mathematical Morphology)

  • 김해룡;김남철
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 1995년도 학술대회
    • /
    • pp.143-148
    • /
    • 1995
  • In this paper, we describe a fast 3D video segmentation method using mathematical morphology. The proposed 3D video segmentation algorithm is composed of intra-frame segmentation step and inter-frame segmentation step. In the intra-frame segmentation step, the first frame is segmented using the fast hierarchical segmentation method. Then, in the inter-frame segmentation step, the next frames are segmented using markers that are extracted from the difference of previous segmentation result and simplified present image. Experimental results show that the proposed method has more fast structure and is suitable for video segmentation.

방송 매체 간 경쟁 상황에서의 활용 자원에 기반한 IPTV 고객 세분화 (Customer Segmentation for IPTV Based on Competitive Resources under the Competition Environment among Broadcasting Media)

  • 서보밀
    • Journal of Information Technology Applications and Management
    • /
    • 제19권2호
    • /
    • pp.97-116
    • /
    • 2012
  • Since 2008 when IPTV service entered the broadcasting market, the competition among interactive broadcasting media has been growing more and more fierce. To make a market strategy under the harsh competition, this study tried to make an IPTV customer segmentation based on the characteristics of interactive broadcasting media. From previous literature, this study drew five characteristics of interactive broadcasting media : ease of use, two-way communications, active control, variety of content, and economic efficiency. Two-step clustering based on these characteristics identified four customer segments. There were statistically significant differences in the five characteristics among the customer segments. This study profiled the customer segments and proposed competitive strategies for each customer segment.

깊이 슈퍼 픽셀을 이용한 실내 장면의 의미론적 분할 방법 (Semantic Segmentation of Indoor Scenes Using Depth Superpixel)

  • 김선걸;강행봉
    • 한국멀티미디어학회논문지
    • /
    • 제19권3호
    • /
    • pp.531-538
    • /
    • 2016
  • In this paper, we propose a novel post-processing method of semantic segmentation from indoor scenes with RGBD inputs. For accurate segmentation, various post-processing methods such as superpixel from color edges or Conditional Random Field (CRF) method considering neighborhood connectivity have been used, but these methods are not efficient due to high complexity and computational cost. To solve this problem, we maximize the efficiency of post processing by using depth superpixel extracted from disparity image to handle object silhouette. Our experimental results show reasonable performances compared to previous methods in the post processing of semantic segmentation.

RGB Motion Segmentation using Background Subtraction based on AMF

  • 김윤호
    • 한국정보전자통신기술학회논문지
    • /
    • 제7권1호
    • /
    • pp.61-67
    • /
    • 2014
  • Motion segmentation is a fundamental technique for analysing image sequences of real scenes. A process of identifying moving objects from data is a typical task in many computer vision applications. In this paper, we propose motion segmentation that generally consists from background subtraction and foreground pixel segmentation. The Approximated Median Filter(AMF) was chosen to perform background modeling. Motion segmentation in this paper covers RGB video data.

위치 분포 및 그래프 절단에 의한 모발 분류와 영역 분할 (Hair Classification and Region Segmentation by Location Distribution and Graph Cutting)

  • 김용길;문경일
    • 한국인터넷방송통신학회논문지
    • /
    • 제22권3호
    • /
    • pp.1-8
    • /
    • 2022
  • 최근 소개된 구글 MediaPipe의 모발 분할 방식은 실시간 모바일 애플리케이션을 위해 특별히 설계된 단일 카메라 입력에서 신경망 기반 모발 분할을 위한 새로운 접근 방식을 제시한다. 상대적으로 작은 신경망으로 가상 머리카락 다시 칠하기와 같은 증강 현실 효과에 매우 적합한 고품질 머리카락 분할 마스크를 생성한다. 그렇지만, 모발 스타일 또는 모발 영역에 잡음이 있는 경우에 모발 분할 정확도가 떨어지는 문제점들이 있다. 이에 본 연구에서는 지정된 라벨에서 모발 위치와 모발 색상 가능성의 추정된 사전 분포에 따라 이미지의 에너지 함수를 구성하고, 이것을 그래프 절단 알고리즘에 따라 최적화시키는 방식으로 초기 모발 영역을 얻는 방식을 도입한다. 그런 다음에, 초기 모발 영역에 클러스터링 알고리즘과 사후 처리 기법을 적용하여 최종 모발 영역을 정밀하게 분할 할 수 있도록 한다. 제안된 방식은 MediaPipe의 모발 분할 파이프라인에 적용된다.

모바일 시스템에서 텍스트 인식 위한 적응적 문자 분할 (Adaptive Character Segmentation to Improve Text Recognition Accuracy on Mobile Phones)

  • 김정식;양형정;김수형;이귀상;;김선희
    • 스마트미디어저널
    • /
    • 제1권4호
    • /
    • pp.59-71
    • /
    • 2012
  • Since mobile phones are used as common communication devices, their applications are increasingly important to human's life. Using smart-phones camera to collect daily life environment's information is one of targets for many applications such as text recognition, object recognition or context awareness. Studies have been conducted to provide important information through the recognition of texts, which are artificially or naturally included in images and movies acquired from mobile phones. In this study, a character segmentation method that improves character-recognition accuracy in images obtained from mobile phone cameras is proposed. The proposed method first classifies texts in a given image to printed letters and handwritten letters since segmentation approaches for them are different. For printed letters, rough segmentation process is conducted, then the segmented regions are integrated, deleted, and re-segmented. Segmentation for the handwritten letters is performed after skews are corrected and the characters are classified by integrating them. The experimental result shows our method achieves a successful performance for both printed and handwritten letters as 95.9% and 84.7%, respectively.

  • PDF

Semantic Image Segmentation for Efficiently Adding Recognition Objects

  • Lu, Chengnan;Park, Jinho
    • Journal of Information Processing Systems
    • /
    • 제18권5호
    • /
    • pp.701-710
    • /
    • 2022
  • With the development of artificial intelligence technology, various methods have been developed for recognizing objects in images using machine learning. Image segmentation is the most effective among these methods for recognizing objects within an image. Conventionally, image datasets of various classes are trained simultaneously. In situations where several classes require segmentation, all datasets have to be trained thoroughly. Such repeated training results in low training efficiency because most of the classes have already been trained. In addition, the number of classes that appear in the datasets affects training. Some classes appear in datasets in remarkably smaller numbers than others, and hence, the training errors will not be properly reflected when all the classes are trained simultaneously. Therefore, a new method that separates some classes from the dataset is proposed to improve efficiency during training. In addition, the accuracies of the conventional and proposed methods are compared.

CT HEAD IMAGES SEGMENTATION USING UNSUPERVISED TECHNIQUES

  • Lee, Tong Hau;Fauzi, Mohammad Faizal Ahmad;Komiya, Ryoichi;Hu, Ng
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2009년도 IWAIT
    • /
    • pp.217-222
    • /
    • 2009
  • In this paper, a new approach is proposed for the segmentation of Computed Tomography (CT) head images. The approach consists of two-stage segmentation with each stage contains two different segmentation techniques. The ultimate aim is to segment the CT head images into three classes which are abnormalities, cerebrospinal fluid (CSF) and brain matter. For the first stage segmentation, k-means and fuzzy c-means (FCM) segmentation are implemented in order to acquire the abnormalities. Whereas for the second stage segmentation, modified FCM with population-diameter independent (PDI) and expectation-maximization (EM) segmentation are adopted to obtain the CSF and brain matter. The experimental results have demonstrated that the proposed system is feasible and achieve satisfactory results.

  • PDF