• Title/Summary/Keyword: mechanism of translocation

Search Result 216, Processing Time 0.036 seconds

Molecular Association of Glucose Transporter in the Plasma Membrane of Rat Adipocyte

  • Hah, Jong-Sik
    • The Korean Journal of Physiology
    • /
    • v.25 no.2
    • /
    • pp.115-123
    • /
    • 1991
  • Molecular association of glucose transporters with the other proteins in the plasma membrane was assessed by gel electrophoresis and immunoblot techniques. Approximately $31.5{\pm}5.1%$ of GLUT-4, $64.8{\pm}2.7%$ of clathrin, 48.7% of total protein in the plasma membrane (PM) were found insoluble upon extraction with 1% Tx-100. Sodium dodecyl sulfate polyacrylamide gel electrophoresis revealed that the Tx-100 insoluble PM fraction contained about 4 major polypeptides with apparent molecular weight of above 200, 100-120, 80 and 30-35 KDa that were readily removed upon wash with a high pH buffer which is known to remove clathrin and 0.5 M Tris-buffer which is known to remove assembly proteins (AP). Immunoblotting of GLUT4 and clathrin against specific antibodies showed that GLUT-4 and clathrin were co-solubilized up to 84.6% and 82.7% respectively by wash with a high pH buffer and 1% Tx-100. When the membrane was pre-washed with a high pH buffer and 0.5 M Tris solution, GLUT4 and clathrin were not solubilized further suggesting that GLUT4 molecules are in molecular association with clathrin, AP and/or other extrinsic membrane proteins in plasma membrane and the formation of clathrin-coated structures might be involved in insulin stimulated glucose transporter translocation mechanism.

  • PDF

NF-kB and AP-1-regulatory Mechanism of Buthus Martensi Karsch Herbal Acupuncture Solution on Inflammatory Cytokine-induced Human Chondrocytes Dysfunction

  • Cho, Jae-Yong;Kim, Kyung-Ho;Cho, Hyun-Seok;Lim, Dae-Jung;Hwang, Ji-Hye;Kim, Kap-Sung
    • Journal of Acupuncture Research
    • /
    • v.23 no.2
    • /
    • pp.61-72
    • /
    • 2006
  • Objectives : Human chondrocytes co-treated with Buthus martensi Karsch herbal acupuncture solution(BMK-HAS) extract produced significantly less NO compared with chondrocytes stimulated with $IL-1{\beta}$ alone Methods : Activation and translocation of and NF-kB DNA binding activity were determined by Western blotting and specific enzyme-linked immunosorbent assay. Results : The inhibition of NO production correlated with the suppression of induction and expression of nuclear factor-kB (NF-kB) and activation protein-1 (AP-1)-dependent gene. BMK-HAS inhibited the activation and translocation of NF-kB to the nucleus, indicating that BMK-HAS inhibits the $IL-1{\beta}-induced$ production of NO in human chondrocytes by interfering with the activation of NF-kB through a novel mechanism. In addition, BMK-HAS reduced prostaglandin E2 (PGE2)production in mouse peritoneal macrophages stimulated with lipopolysaccharide, whereas no influence on the activity of inducible NO synthase (iNOS), cyclooxygenase-2 (COX-2) or cyclooxygenase-1 (COX-1) was observed. My data, therefore, suggest that BMK-HAS may be a therapeutically effective inhibitor of $IL-1{\beta}-induced$ inflammatory effects that are dependent on NF-kB activation in human OA chondrocytes. Conclusion : The results indicate that BMK-HAS exerts anti-inflammatory effects related to the inhibition of neutrophil functions and of NO and PGE2 production, which could be due to a decreased expression of iNOS and COX-2 through the transcription factors NF-kB and AP-1.

  • PDF

Determination of paraquat-resistant biotype on Conyza canadensis and the resistant mechanism (Paraquat 저항성 생태형 망초의 선발과 저항성 기작)

  • Kim, Sung-Eun;Kim, Seung-Yong;Ahn, Sul-Hwa;Chun, Jae-Chul
    • The Korean Journal of Pesticide Science
    • /
    • v.9 no.1
    • /
    • pp.88-96
    • /
    • 2005
  • Paraquat-resistant biotype of Conyza canadensis (L.) Cronq. was determined by chlorophyll loss and random amplified polymorphic DNA (RAPD) analysis and the resistant mechanism was investigated with respect to absorption, translocation, and binding constant. RAPD analysis for paraquat resistant (R) and susceptible (S) biotypes found in a pear orchard revealed that the biotypes possessed remote genetic relationship. Chlorophyll loss, as an indication of paraquat toxicity, of S biotype was 7.8-fold greater than that of R biotype. There were no differences in contents of epicuticular wax and cuticle and amounts of [14C]paraquat penetrating the cuticle between the two biotypes. Little translocation of the herbicide out of the treated leaf was observed in either biotype. Binding constants of paraquat to the cell wall and thylakoid membrane were 7.4-fold and 16.9-fold, respectively, higher in R biotype than in S biotype. The results suggest that the resistance mechanism of C. canadensis biotype is due partly to high binding affinity of paraquat to the cell wall and thylakoid membrane.

Suppression of Prostaglandin E2-Mediated Cell Proliferation and Signal Transduction by Resveratrol in Human Colon Cancer Cells

  • Song, Su-Hyun;Min, Hye-Young;Lee, Sang-Kook
    • Biomolecules & Therapeutics
    • /
    • v.18 no.4
    • /
    • pp.402-410
    • /
    • 2010
  • Although the overproduction of prostaglandin $E_2$ ($PGE_2$) in intestinal epithelial cells has been considered to be highly correlated with the colorectal carcinogenesis, the precise mechanism of action remains poorly elucidated. Accumulating evidence suggests that the PGE receptor (EP)-mediated signal transduction pathway might play an important role in this process. In the present study, we investigated the mechanism of action underlying $PGE_2$-mediated cell proliferation and the effect of resveratrol on the proliferation of human colon cancer cells in terms of the modulating $PGE_2$-mediated signaling pathway. $PGE_2$ stimulated the proliferation of several human colon cancer cells and activated growth-stimulatory signal transduction, including Akt and ERK. $PGE_2$ also increased the phosphorylation of GSK-$3{\beta}$, the translocation of ${\beta}$-catenin into the nucleus, and the expressions of c-myc and cyclin D1. Resveratrol, a cancer chemopreventive phytochemical, however, inhibited $PGE_2$-induced growth stimulation and also suppressed $PGE_2$-mediated signal transduction, as well as ${\beta}$-catenin/T cell factor-mediated transcription in human colon cancer cells. These findings present an additional mechanism through which resveratrol affects the regulation of human colon cancer cell growth.

Absorption, Translocation and Metabolism of Naproanilide in Rice and Paddy Weeds under Different Temperature Conditions (수도(水稻)와 잡초(雜草)에서 온도조건(溫度條件)에 따른 Naproanilide의 흡수(吸收), 이행(移行) 및 대사(代謝)에 관(關)한 연구(硏究))

  • Park, C.W.;Pyon, J.Y.;Kim, Y.W.
    • Korean Journal of Weed Science
    • /
    • v.11 no.3
    • /
    • pp.187-194
    • /
    • 1991
  • Absorption and translocation, and metabolism studies using $^{14}C$-naproanilide were conducted to determine selective mode of action of naproanilide in rice and paddy weeds under different temperature conditions. Absorption amount of $^{14}C$-naproanilide was greater in Cyperus serotinus and Sagittaria pygmaea than rice and Echinochloa crusgalli. Especially, absorption of $^{14}C$-naproanilide in C. serotinus was increased twice at 32 $^{\circ}C$ and 48 hour exposure conditions. $^{14}C$-naproanilide in roots was translocated to shoots very little in rice and E. crusgalli, but S. pygmaea somewhat greater translocation than the other species. In C. serotinus and S. pygmaea, susceptible weeds, metabolic rates of naproanilide into phytotoxic NOP (2-(2-naphthoxy)-propionic acid) and NOPM (methyl 2-(2-naphthoxy) propionate) were significantly greater than in rice and E. crugalli, tolerant species. Consequently, differential uptake by roots and the difference in activation metabolism of naproanilide among species may explain the possible mechanism of selectivity.

  • PDF

Mechanism of Sulfonylurea Herbicide Resistance in Broadleaf Weed, Monochoria korsakowii (광엽잡초 물옥잠의 Sulfonylurea 제초제에 대한 저항성 작용기작)

  • Park, Tae-Seon;Lhm, Yang-Bin;Kyung, Kee-Sung;Lee, Su-Heon;Park, Jae-Eup;Kim, Tae-Wan;Kim, Kil-Ung
    • The Korean Journal of Pesticide Science
    • /
    • v.7 no.4
    • /
    • pp.239-247
    • /
    • 2003
  • This experiment was carried out to study the resistant mechanism of sulfonylurea(SU) herbicides to Monochoria korsakowii occurring in the rice fields of Korea. The activity of acetolactate synthase(ALS), absorption and translocation of $[^{14C}]$bensulfuron-methyl, and DNA sequence of ALS genes were studied. The apparent SU resiatance to Monochoria korsakowii was confirmed in greenhouse testes. Fresh weight accumulation$(GR_{50})$ in the resistant biotype was about 5- to 64-fold higher in the presence of six SU herbicides compared to the susceptible biotype. The ALS activity isolated from the resistant biotype to herbicides tested was less sensitive than that of susceptible biotype. The concentration of herbicide required for 50% inhibition of ALS activity$(I_{50})$ was 14- to 76-fold higher as compared to the susceptible biotype. No differences were observed in the rates of $[^{14C}]$bensulfuron uptake and translocation. However, the DNA sequence from the resistant biotype differed from that of the susceptible biotype by single nucleotide substitution at three amino acid each in the middle region excluding the ends of ALS genes. We found three point mutations causing substitution of serine for threonine at amino acid 168, arginine for histidine at amino acid 189, and a aspartic acid for phenylalanine at amino acid 247, respectively, in the resistant biotype.

Role of Adenosine and Protein Kinase C in the Anti-ischemic Process of Ischemic Preconditioning in Rat Heart (허혈전처치의 허혈심장 보호과정에서 Adenosine 및 Protein Kinase C의 역할)

  • You, Ho-Jin;Park, Jong-Wan;Kim, Myung-Suk
    • The Korean Journal of Pharmacology
    • /
    • v.32 no.1
    • /
    • pp.31-37
    • /
    • 1996
  • The protective effect of 'ischemic preconditioning (IP)'on ischemia-reperfusion injury of heart has been reported in various animal species, but the mechanism is unclear. In an attempt to elucidate the mechanism of IP, we examined the effects of blockers against adenosine and protein kinase C in preconditioned heart of rat. The hearts perfused with oxygen-saturated Krebs-Henseleit solution by Langendorff method were exposed to 30 min global ischemia followed by 20 min reperfusion. IP was performed with three episodes of 5 min ischcmia and 5 min reperfusion just before ischemia-reperfusion. IP prevented the depression of contractile function and the myocardial contracture in the ischemic-reperfused heart and reduced the release of lactate dehydrogenase during the reperfusion period. Polymyxin B, chelerythrine and colchicine, PKC inhibitors, attenuated almost completely the anti-ischemic effect of IP, while adenosine receptor antagonists did not. These results indicate that PKC may be a crucial intracellular mediator in anti-ischemic action of IP in ischemic-reperfused rat heart, while adenosine may not be involved in the mechanism of IP.

  • PDF

Selective Mechanism of Cyhalofop-butyl ester between Rice(Oryzae sativa L.) and Echinochloa crus-galli - III. Uptake, Translocation, and Metabolism, of 14C-cyhalofop-butyl ester (제초제(除草劑) Cyhalofop-butyl ester의 벼와 피간(間)의 선택성기작(選擇性機作) - III. 흡수(吸收), 전이(轉移) 및 대사(代謝))

  • Kim, K.U.;Park, J.E.
    • Korean Journal of Weed Science
    • /
    • v.17 no.2
    • /
    • pp.185-191
    • /
    • 1997
  • This experiment was conducted to determine the selective mechanism of cyhalofop-butyl ester on uptake, traslocation, and metabolism of the herbicide in both rice and Echinochloa crus-galli. Uptake and translocation of $^{14}C$-cyhalofop-butyl ester was higher in E. crus-galli than rice when treated to shoot. $^{14}C$-uptake by root of E. crus-galli increased rapidly at 30 minute after treatment and reached the maximum at 12 hoots after treatment. After that, uptake was leveled off. Uptake pattern in rice root was not significantly affected by the duration of herbicide treatment. In E. crus-galli, the absorbed $^{14}C$-cyhalofop-butyl ester seemed to be rapidly metabolized into free acid and the content of changed free acid was higher than rice.

  • PDF

Effect of superoxide anion in the regulation of artrial natriuretic peptide (ANP) secretion (심방이뇨호르몬의 분비조절에 있어서 superoxide anion의 영향)

  • Kang, Chang-won;Kim, Nam-soo;Lee, Ho-il
    • Korean Journal of Veterinary Research
    • /
    • v.36 no.1
    • /
    • pp.65-74
    • /
    • 1996
  • Atrial Natriuretic Peptide(ANP) is a hormone with potent natriuretic, diuretic and relaxing properties of vascular smooth muscle. Specific chemical modulator responsible for the ANP secretion has not yet been found. Although atrial stretch of stretch-release is to be a major stimulus for the secretion of ANP, the precise mechano-molecular transduction mechanism responsible for its evoked secretion remains to be elucidated. It is interested to clarify the effect of superoxide anion in the stretch-induced ANP secretion. In order to investigate the effectg of $H_2O_2$ in the regulation of ANP secretion, a perfused model of left atrium of rats was used. The results obtained were as follows; 1. The ANP secretion and the extracellular fluid(ECF) translocation were accentuated by the effect of repetitive atrial distension-reduction volume at atrial pressure($4cmH_2O$). 2. The dilution curve showed to be in parallel between pure atriopeptin III (AP III) and perfusated buffer. 3. $H_2O_2(5{\times}10^{-4}M)$ accenturated a strectch-release induced increase of the ANP secretion. The amount of released ANP was significantly(p<0.01) increased. These results suggest that the superoxide anion may be involved in the regulatory mechanism of mechanically activated ANP release.

  • PDF

Presteady State Kinetics of ATP Hydrolysis by Escherichia coli Rho Protein Monitors the Initiation Process

  • Jeong, Yong-Ju;Kim, Dong-Eun
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.2
    • /
    • pp.224-230
    • /
    • 2006
  • Escherichia coli transcription termination factor Rho catalyzes the unwinding of RNA/DNA duplex in reactions that are coupled to ATP binding and hydrolysis. We report here the kinetic mechanism of presteady state ATP binding and hydrolysis by the Rho-RNA complex. Presteady state chemical quenched-flow technique under multiple turnover condition was used to probe the kinetics of ATP binding and hydrolysis by the Rho-RNA complex. The quenched-flow presteady state kinetics of ATP hydrolysis studies show that three ATPs are bound to the Rho-RNA complex with a rate of $4.4\;{\times}\;10^5M^{-1}s^{-1}$, which are subsequently hydrolyzed at a rate of $88s^{-1}$ and released during the initiation process. Global fit of the presteady state ATP hydrolysis kinetic data suggests that a rapid-equilibrium binding of ATP to Rho-RNA complex occurs prior to the first turnover and the chemistry step is not reversible. The initial burst of three ATPs hydrolysis was proposed to be involved in the initialization step that accompanies proper complex formation of Rho-RNA. Based on these results a kinetic model for initiation process for Rho-RNA complex was proposed relating the mechanism of ATP binding and hydrolysis by Rho to the structural transitions of Rho-RNA complex to reach the steady state phase, which is implicated during translocation along the RNA.