• Title/Summary/Keyword: mechanical wet-milling

Search Result 23, Processing Time 0.027 seconds

Synthesis of Cathode Material-Nickel Sulfides by Mechanical Alloying for Sodium Batteries

  • Liu, Xiaojing;Ahn, Hyo-Jun;Ahn, In-Shup
    • Journal of Powder Materials
    • /
    • v.19 no.3
    • /
    • pp.182-188
    • /
    • 2012
  • In this study, fine cathode materials $Ni_3S_2$ and $NiS_2$ were synthesized using the simple, convenient process of mechanical alloying (MA). In order to improve the cell properties, wet milling processes were conducted using low-energy ball milling to decrease the mean particle size of both materials. The cells of Na/$Ni_3S_2$ and Na/$NiS_2$ show a high initial discharge capacity of 425 mAh/g and 577 mAh/g respectively using wet milled powder particles, which is much larger than commercial ones, providing some potential as new cathode materials for rechargeable sodium-ion batteries.

Synthesis and Densification of Nanostructured $Al_2O_3-(Zro_2+3%Mol\;Y_2O_3)$ Bioceramics by High-Frequency Induction Heat Sintering

  • Kim, Sug-Won;Khalil, Khalil Abdel-razek
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.527-528
    • /
    • 2006
  • Nanostructured Alumina - 20 vol% 3YSZ composites powder were synthesized by wet-milling technique. The starting materials were a mixture of Alumina micro-powder and 3YSZ nano-powders. Nano-crystalline grains were obtained after 24 h milling time. The nano-structured powder compacts were then processed to full density at different temperatures by high-frequency induction heat sintering (HFIHS). Effects of temperature on the mechanical and microstructure properties have been studied. $Al_2O_3-3YSZ$ composites with higher mechanical properties and small grain size were successfully developed at relatively low temperatures through this technique.

  • PDF

The Effect of Surface Roughness according to Machining Conditions of Test Specimen for Precision Micro-milling Machining (미세정밀밀링 가공을 위한 검사시편의 가공조건에 따른 표면거칠기에 대한 영향 분석)

  • Sim, Min-Seop;Kim, Dong-Hyeon;Lee, Choon-Man
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.1
    • /
    • pp.49-55
    • /
    • 2015
  • Recently, many researchers and industry are looking for ways to decrease the use of lubricants because of economical and environmental reasons. One of the lubrication technologies is the MQL method. This study presents a research of MQL and Wet milling processes of Al 6061 material. For this experiment, the test specimen is suggested, and various machining conditions are applied. And, shape of micro-pattern which has been recently spotlighted is included in the test specimen. In order to compare MQL with Wet machining, several milling experiments were carried out, varying feed rate, cutting speed, depth of cut, etc. Finally, the surface roughness results of machining tests according to the process conditions were measured. It is expected that the results of machining experiments can be used to predict the surface roughness of various MQL milling processes.

Microstructural Characteristics of Ni/YSZ Cermet for High Temperature Electrolysis by Mechanical Alloying (기계적 합금화법으로 제조된 고온 수전해용 Ni/YSZ 전극의 미세구조 특성)

  • Park Keun-Man;Chae Ui-Seok;Hong Hyun Seon;Choo Soo-Tae
    • Korean Journal of Materials Research
    • /
    • v.14 no.10
    • /
    • pp.743-748
    • /
    • 2004
  • Modified Ni/YSZ cermets for high temperature electrolysis were synthesized by the direct ball milling of Ni and YSZ powder. The ball milling was carried out in dry process and in ethanol with varying milling time. While the dry-milling decreased the average size from 65 to $80{\mu}m$, the wet-milling decreased the average size down to $10{\mu}m$. In addition, very fine particles less than $0.1{\mu}m$ were observed in the wet-milling condition. The subsequent process of cold-pressing and sintering at $900^{\circ}C$ for 2 h did not affect the particle size of dry-milled powder. The electrical conductivity of the dry-milled Ni/YSZ cermet showed the value of $5{\times}10^{2}\;S/cm$ and this value was increased to $1.4{\times}10^{4}\;S/cm$ after the sintering at $900^{\circ}C$ for 2 h.

The Specficity of Phase Transitions of Lead Monoxide (산화납의 특이상전이)

  • 김정욱;최성철;이응상
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.8
    • /
    • pp.623-628
    • /
    • 1993
  • Lead monoxide has two phases at room temperature. One is a yellow orthorhombic phase, the other is a redtetragonal phase. Sometimes two phases are hybrided. The specificity of phase transitions of lead oxide is found during the milling of the batch including lead oxide. The pure orthorhombic phase of PbO can be transformed to the tetragonal phase perfectly by wet ball milling (milling liquid is distilled water) without thermal energy. However, when ethyl alcohol, isopropyl alcohol and aceton are used as milling liquid, respectively, the hybrid form of orthorhombic andtetragonal phases is obtained by wet ball milling. From the hybrid form heat-treated at $600^{\circ}C$ for 3hrs, this work results that mechanical phase transition of orthorhombic phase make a new form as distorted type orthorhombic phase of PbO.

  • PDF

Preparation and characteristics of modified Ni/YSZ cermet for high temperature electrolysis (고온 수전해 전극용 modified Ni/YSZ cermet 제조 및 전극특성)

  • Chae, Ui-Seok;Park, Geun-Man;Hong, Hyeon-Seon;Choo, Soo-Tae;Yun, Yongseung
    • Journal of Hydrogen and New Energy
    • /
    • v.15 no.2
    • /
    • pp.98-107
    • /
    • 2004
  • Modified Ni/YSZ cermets for high temperature electrolysis were synthesized by dry or wet mechanical alloying methods. The Ni/YSZ composit particle was directly fabricated from the ball milling of Ni and YSZ powder or obtained from the reduction of NiO/YSZ particle after the ball milling of NiO and YSZ. In the case of the NiO/YSZ composite particle, the dry milling increased the average particle size whereas the wet milling decreased the size. The dry milling showed that fine YSZ particles were distributed over large Ni surfaces while Ni and YSZ particles similar in size were well mixed in the wet milling method. These features were the same in the Ni/YSZ composite particle prepared from Ni and YSZ powders. The electrical conductivity of the wet-milled Ni/YSZ cermet showed the highest value of $2{\times}10^2S/cm$ among the specimens and this value was increased to $1.4\times10^4S/cm$ after the sintering at $900^\circ{C}$ for 1 h.

Comparison of Some Characteristics Relevant to Rice Bread made from Eight Varieties of Endosperm Mutants between Dry and Wet Milling Process (제분방법을 달리하여 제조한 8품종 변이체벼의 쌀빵가공성 비교)

  • Kang, Mi-Young;Han, Ji-Yeun
    • Korean Journal of Food Science and Technology
    • /
    • v.32 no.1
    • /
    • pp.75-81
    • /
    • 2000
  • The processing properties for rice bread were examined using eight kinds of endosperm mutant rice. The varietal differences among eight kinds of endosperm mutant rice having the respective sugar contents and amylose contents were studied. The water absorptions of these eight cultivars were observed to have significant differences among the cultivars, revealing the water absorption ability of Shrunken(shr.) was 61.5%, and that of Punchilmi(fl) was 48.4%. In addition, the experiments using Whachungbyeo, Nampungbyeo and their mutant cultivars showed that the maximum water absorption was tend to be negatively correlated with the amylose content of each rice cultivars. This study also showed that the rice breads made by dry-milling was better in shape, mechanical properties(hardness, springiness, adhesiveness, chewiness) and texture tested using sensory evaluation than that made by wet-milling.

  • PDF

Effects of the Sintering Variable on Impact Energy in MA 316L ODS and Wet 316L ODS Stainless Steels (MA 316L ODS 및 Wet 316L ODS 스테인리스강에서 충격에너지에 미치는 소결 공정의 영향)

  • Kim, Sung-Soo;Han, Chang-Hee;Jang, Jin-Sung
    • Journal of Powder Materials
    • /
    • v.17 no.2
    • /
    • pp.113-122
    • /
    • 2010
  • Two kinds of oxide-dispersion-strengthened (ODS) 316L stainless steel were manufactured using a wet mixing process(wet) and a mechanical alloying method (MA). An MA 316L ODS was prepared by a mixing of metal powder and a mechanical alloying process. A wet 316L ODS was manufactured by a wet mixing with 316L stainless steel powder. A solution of yttrium nitrate was dried after being in the wet 316L ODS alloy. The results showed that carbon and oxygen were effectively reduced during the degassing process before the hydroisostatic process (HIP) in both alloys. It appeared that the effect of HIP treatment on increase in impact energy was pronounced in the MA 316L ODS alloy. The MA 316L ODS alloy showed a higher yield strength and a smaller elongation, when compared to the wet 316L ODS alloy. This seemed to be attributed to the enhancement of bonding between oxide and matrix particles from HIP and to the presence of a finer oxide of about 20 nm from the MA process in the MA 316L ODS alloy.

Fabrication and Characterization of ODS 316L Stainless Steels (산화물 분산강화형 316L 스테인리스강의 제조와 특성 연구)

  • Kim, Min-Ho;Ryu, Ho-Jin;Kim, Sung-Soo;Han, Chang-Hee;Jang, Jin-Sung;Kwon, Oh-Jong
    • Journal of Powder Materials
    • /
    • v.16 no.2
    • /
    • pp.122-130
    • /
    • 2009
  • Austenitic oxide-dispersion-strengthened (ODS) stainless steel was fabricated using a wet mixing process without a mechanical milling in order to reduce contaminations of impurities during their fabrication process. Solution of yttrium nitrate was dried after a wet mixing with 316L stainless steel powder. Carbon and oxygen contents were effectively reduced by this wet processing. Microstructural analysis showed that coarse yttrium silicates of about 150 nm were formed in austenitic ODS steels with a silicon content of about 0.8 wt%. Wet-processed austenitic ODS steel without silicon showed higher yield strength by the presence of finer oxide of about 20 nm.

Changes of Micro- and Nanoscopic Morphology of Various Bioresources by Different Milling Systems

  • Jang, Jae-Hyuk;Lee, Seung-Hwan;Lee, Min;Lee, Sang-Min;Kim, Nam-Hun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.6
    • /
    • pp.737-745
    • /
    • 2017
  • This study was carried out to investigate the changes in micro- and nanoscopic morphology of cellulose nanofibrils (CNFs) from various bioresources by investigating various mechanical milling systems. Mechanical milling in herbaceous bioresources was more effective than in woody bioresources, demonstrating lower energy consumption and finer morphology. The milling time to reach nanoscopic size was longer in woody bioresources than in herbaceous bioresources. Furthermore, at the same level of wet disk milling time, CNFs from herbaceous bioresources showed more slender morphology than those from woody bioresources. Tensile properties of nanopaper prepared from CNFs of herbaceous bioresources were higher than those of woody bioresources. The highest tensile strength was found to be 77.4 MPa in the nanopaper from Evening prim rose.