• 제목/요약/키워드: mechanical toughness

검색결과 1,320건 처리시간 0.032초

Effect of barium silicate filler content on mechanical properties of resin nanoceramics for additive manufacturing

  • Won, Sun;Ko, Kyung-Ho;Park, Chan-Jin;Cho, Lee-Ra;Huh, Yoon-Hyuk
    • The Journal of Advanced Prosthodontics
    • /
    • 제14권5호
    • /
    • pp.315-323
    • /
    • 2022
  • PURPOSE. The purpose of this study was to investigate the effect of barium silicate filler contents on mechanical properties of resin nanoceramics (RNCs) for additive manufacturing (AM). MATERIALS AND METHODS. Additively manufactured RNC specimens were divided into 4 groups depending on the content of ceramic fillers and polymers: 0% barium silicate and 100% polymer (B0/P10, control group); 50% barium silicate and 50% polymer (B5/P5); 60% barium silicate and 40% polymer (B6/P4); 67% barium silicate and 33% polymer (B6.7/P3.3). The compressive strength (n = 15) and fracture toughness (n = 12) of the specimens were measured, and scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDS) analyses were performed. Independent sample Kruskal-Wallis tests were performed on the compressive strength and fracture toughness test results, and the significance of each group was analyzed at the 95% confidence interval through post-tests using the Bonferroni's method. RESULTS. B6/P4 and B6.7/P3.3 exhibited much higher yield strength than B0/P10 and B5/P5 (P < .05). Compared to the control group (B0/P10), the other three groups exhibited higher ultimate strength (P < .05). The fracture toughness of B6/P4 and B6.7/P3.3 were similar (P > .05). The content of barium silicate and fracture toughness showed a positive correlation coefficient (R = 0.582). SEM and EDS analyses revealed the presence of an oval-shaped ceramic aggregate in B6/P4 specimens, whereas the ceramic filler and polymer substrate were homogeneously mixed in B6.7/P3.3. CONCLUSION. Increasing the ceramic filler content improves the mechanical properties, but it can be accompanied by a decrease in the flowability and the homogeneity of the slurry.

이종 마찰용접재의 계면균열에 대한 파괴인성의 평가방법 (An Evaluation Method of Fracture Toughness on Interface Crack in Friction Welded Dissimilar Materials)

  • 정남용;박철희
    • 한국자동차공학회논문집
    • /
    • 제15권4호
    • /
    • pp.171-177
    • /
    • 2007
  • In this paper, an evaluation method of fracture toughness on interface cracks was investigated in friction welded dissimilar materials with interfacial edge cracks. To establish a reasonable strength evaluation method and fracture criterion, it is necessary to analyze stress intensity factor under the load and residual stress condition on friction welded interface between dissimilar materials. The friction welded specimens with an edged crack were prepared for analysis of stress intensity by using the boundary element method (BEM) and the fracture toughness. A quantitative fracture criterion for friction welded STS 304/SM 45C with interface crack is suggested by using stress intensity factor, F and the results of fracture toughness experiment.

나노 압입자를 이용한 박막/모재 구조의 계면파괴인성치 평가 (Evaluation of interfacial toughness of film/substrate by nanoindenter)

  • 서병국;엄윤용
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.36-41
    • /
    • 2004
  • A method to measure the interfacial toughness of film/substrate by nanoindenter is proposed. As the thickness of the film decreases, the measurement of the interfacial toughness requires the more sophisticated equipment such as nanoindenter. In this study, the nanoindenter is applied to the substrate near the interface of film/substrate in the direction perpendicular to the normal of the interface, causing the cohesive fracture of the substrate, followed by the interfacial cracking. The specimen of Cu($0.56 {\mu}m$)/Si(530 ${\mu}$) are made by sputtering the copper onto the silicon wafer. By scratching the copper surface, we can make the easy interfacial cracking during the nanoindentation. It is found that the averaged values of the interfacial toughness of the Cu/Si is $0.664{\pm}0.3\;J/m^2$ . The phase angle of the specimen in this study is ${\psi}{\simeq}-36.8^{\circ}$, computed by the method of Suo and Hutchinson.[1]

  • PDF

압축잔류응력이 스프링강(SUP-9)의 고온파괴인성에 미치는 영향에 관한 연구 (A Study on High Temperature Fracture Toughness Characterisitics of Spring Steel by Compressive Residual Stress)

  • 정재욱;박원조;이광영;허선철
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.314-319
    • /
    • 2004
  • High temperature fracture toughness characteristics of shot peened spring steel(SUP-9), which is used for automobile suspension system and railroad, was investigated in this paper. Fracture tougness test for room temperature, $100^{\circ}C$ , and $200^{\circ}C$ were evaluated by material test system(MTS). The experimental results show that the fracture toughness was improved by peened and unpeened. The fracture toughness for high temperature were also improved by peened and unpeened.

  • PDF

미소 비커스 압입균열에 의한 초경합금의 파괴 인성치 측정 (Measurement of Fracture Toughness of WC-Co Composites by Micro-Vickers Indentation Cracks)

  • Lee, O.S.;Son, I.S.;Park, W.K.;Hwang, S.K.
    • 한국정밀공학회지
    • /
    • 제12권2호
    • /
    • pp.5-13
    • /
    • 1995
  • Various techniques to measure fracture toughness which is an important parameter to predict fracture behavious of structural materials have been reported. Among these mathods, this paper describes the micro-Vickers indentation crack method to estimate the fracture toughness of some WC-Co composites. Two indentation crack patterns (such as radial-median cracks (orhalf-penny cracks) and Palmqvist cracks generated during indentation) are referred precisely. The fracture toughness of WC-4.7wt%Co, WC-6wr%Co and WE-9wr%Co composites were estimated by using some equations given by Shetty et al., Nihara et al. in this study. We show the reliability of indentation method by comparing the results with those from literatures. The appropriate equation to estimate the fracture toughness in the case of WC-Co composite is given. In addition, some technical informations in terms of the crack length by indentation in estimating the existence of the surface residual stress that prevents to obtain an accurate fracture toughness are presented.

  • PDF

Thermal Shock Tests and Thermal Shock Parameters for Ceramics

  • Awaji, Hideo;Choi, Seong-Min
    • 한국세라믹학회지
    • /
    • 제49권4호
    • /
    • pp.385-396
    • /
    • 2012
  • Thermal shock test methods and thermal shock parameters for ceramics were reviewed from the following viewpoints: (1) The test methods should be based on the precise estimation of both temperature and thermal stress distributions in a specimen taking into account the temperature-dependent thermo-mechanical properties; (2) The thermal shock parameters must be defined as a physical property of the materials and described as a function of temperature at the fracture point of the specimen; (3) The relation between the strength and fracture toughness of brittle ceramics under a thermal shock load must be the same as the relation under a mechanical load. In addition, appropriate thermal shock parameters should be defined by the thermal shock strength and thermal shock fracture toughness based on stress and energy criteria, respectively. A constant heat flux method is introduced as a testing technique suitable for estimating these thermal shock parameters directly from the electric power charged.

생체흡수성 HA/PLLA 복합재료의 용융혼련조건이 파괴특성에 미치는 영향 (Effect of Melt-mixing Conditions on Fracture Properties of Bioabsorbable HA/PLLA Composite Materials)

  • 박상대;이덕보
    • 대한기계학회논문집A
    • /
    • 제31권7호
    • /
    • pp.732-738
    • /
    • 2007
  • Effects of melt-mixing conditions on fracture properties of hydroxyapatite filled bioabsorbable poly(L-lactic acid)(HA/PLLA) composites was investigated by measuring the firacture toughness value of HA/PLLA composites prepared under different mixing time and rotor speed. The fracture surface morphology was also examined by profile measurement and scanning electron microscopies. It was found that the fracture toughness of HA/PLLA composites decreases due to decrease of ductile deformation of PLLA matrix and debonding of interfaces with increase of the rotor speed and mixing time. Effect of mixing process on neat PLLA was also assessed, and it was found that the fracture toughness of PLLA decreases due to disappearance of multiple craze formation and increase of defects. Such thermal and shear-stress degradation were found to be the primary mechanisms of the degradation of HA/PLLA composites during melt-mixing process.

고 에너지 볼 밀링과 SPS 성형에 의해 제조된 Al-Ti-B합금의 파괴인성에 미치는 Ti의 영향 (Effect of Ti addition on the fracture toughness of Al-Ti-B alloys synthesized by high energy ball milling and spark plasma sintering)

  • 김지희;김선진;김준기
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2003년도 추계학술발표강연 및 논문개요집
    • /
    • pp.84-84
    • /
    • 2003
  • The effects of Ti addition on microstructure and mechanical properties of (Al+Xat.%Ti)2at%B (X=0.5, 1, 2) fabricated by mechanical alloying and spark plasma sintering (SPS) were investigated. These alloys were prepared by high energy ball milling (attritor) and then fracture toughness was investigated by using a charpy impact tester. The SPS method was used to consolidate (Al+Xat.%Ti)fat.%B with the pressure of 50MPa. The powders were successfully consolidated to alloy which the theoretical density is 99%. It was confirmed that the fracture toughness of Al-Bat.% matrix composites was increased by the addition of Ti.

  • PDF

탄소섬유강화 복합재료 강도데이터의 통계적 특성에 관한 연구 (A Study on Statistical Nature of CFRP Strength Data)

  • 김선진;이상국;남기우;오세규
    • 대한기계학회논문집A
    • /
    • 제20권2호
    • /
    • pp.511-519
    • /
    • 1996
  • An investigation was conducted to study the statistical nature of tensile strength and static fracture toughness of carbon fiber reinforced plastics(CFRP) materials. A good understanding of statistical aspects of strength data is essential for the successful application of such materials because these composites unpossess material uniformity as compared with conventional metallic materials. In this paper, a statistical approach based on Weibull distribution was applied to the test data to evaluate the dispersion in the tensile strength and static fracture toughness by the change of stacking method and test temparature of the CFRP materials.