• Title/Summary/Keyword: mechanical toughness

Search Result 1,318, Processing Time 0.021 seconds

A study on the fracture toughness evaluating method for cryogenic structural material (극저온용 구조재료의 파괴인성평가법에 관한 연구)

  • Kwon, Il-Hyun;Chung, Se-Hi
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.1
    • /
    • pp.64-72
    • /
    • 1998
  • This paper was undertaken to develop the fracture toughness testing method using small and single specimen compared to the conventional method in evaluating elastic-plastic fracture toughness of the superconducting magnet structural material at cryogenic temperature. The elastic-plastic fracture toughness test was conducted by using the unloading compliance method recommended by ASTM E813-89 to accomplish the above purpose. And, the 20% side-grooved 0.5TCT and 1TCT specimens were used to evaluate the fracture toughness by using as possible as miniaturized CT specimen. The unloading compliance method was a very useful method in evaluating elastic-plastic fracture toughness at cryogenic temperature. It could be taken valid fracture toughness values by using 20% side-grooved 0.5TCT specimen recommended by ASTM E813-89.

Cryogenic Fracture Toughness Evaluation for Austenitic Stainless Steels by Means of Unloading Compliance Method

  • Yu, Hyo-Sun;Kwon, Il-Hyun
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.26-34
    • /
    • 2001
  • Most research to date concerning the cryogenic toughness of austenitic stainless steels has concentrated on the base metal and weld metal in weldments. The most severe problem faced on the conventional austenitic stainless steel is the thermal aging degradation such as sensitization and carbide induced embrittlement. In this paper, we investigate the cryogenic toughness degradation which can be occurred for austenitic stainless in welding. The test materials are austenitic stainless JN1, JJ1 and JK2 steels, which are materials recently developed for use in nuclear fusion apparatus at cryogenic temperature. The small punch(SP) test was conducted to detect similar isothermally aging condition with material degradation occurred in service welding. The single-specimen unloading compliance method was used to determine toughness degradation caused by thermal aging for austenitic stainless steels. In addition, we have investigated size effect on fracture toughness by using 20% side-grooved 0.5TCT specimens.

  • PDF

The effect of mechanical inhomogeneity in microzones of welded joints on CTOD fracture toughness of nuclear thick-walled steel

  • Long Tan;Songyang Li;Liangyin Zhao;Lulu Wang;Xiuxiu Zhao
    • Nuclear Engineering and Technology
    • /
    • v.55 no.11
    • /
    • pp.4112-4119
    • /
    • 2023
  • This study employs the microshear test method to examine the local mechanical properties of narrow-gap welded joints, revealing the mechanical inhomogeneity by evaluating the microshear strength, stress-strain curves, and failure strain. On this basis, the influence of weld joints micromechanical inhomogeneity on the crack tip opening displacement (CTOD) fracture toughness is investigated. From the root weld layer to the cover weld layer, the fracture toughness at the center of the weld seam demonstrates an increasing trend, with the experimental and calculated CTOD values showing a good correspondence. The microproperties of the welded joints significantly impact the load-bearing capacity and fracture toughness. During the deformation process of the "low-matching" microregions, the plastic zone expansion is hindered by the surrounding microregion strength constraints, thus reducing the fracture toughness. In contrast, during the deformation of the "high-matching" microregions, the surrounding microregions absorb some of the loading energy, partially releasing the concentrated stress at the crack tip, which in turn increases the fracture toughness.

Mechanical Behavior and Numerical Estimation of Fracture Resistance of a SCS6 Fiber Reinforced Reaction Bonded Si$_3$N$_4$ Continuous Fiber Ceramic Composite

  • Kwon, Oh-Heon;Michael G. Jenkins
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.9
    • /
    • pp.1093-1101
    • /
    • 2002
  • Continuous fiber ceramic composites (CFCCs) have advantages over monolithic ceramics : Silicon Nitride composites are not well used for application because of their low fracture toughness and fracture strength, but CFCCs exhibit increased toughness for damage tolerance, and relatively high stiffness in spite of low specific weight. Thus it is important to characterize the fracture resistance and properties of new CFCCs materials. Tensile and flexural tests were carried out for mechanical properties and the fracture resistance behavior of a SCS6 fiber reinforced Si$_3$N$_4$ matrix CFCC was evaluated. The results indicated that CFCC composite exhibit a rising R curve behavior in flexural test. The fracture toughness was about 4.8 MPa$.$m$\^$1/2 , which resulted in a higher value of the fracture toughness because of fiber bridging. Mechanical properties as like the elastic modulus, proportional limit and the ultimate strength in a flexural test are greater than those in a tensile test. Also a numerical modeling of failure process was accomplished for a flexural test. This numerical results provided a good simulation of the cumulative fracture process of the fiber and matrix in CFCCs.

Evaluation of Fracture Toughness by Energy Release Rate for Interface Crack in Adhesively Bonded Joints (에너지 방출률에 의한 접착이음의 계면균열에 대한 파괴인성의 평가)

  • Jeong, Nam-Yong;Lee, Myeong-Dae;Gang, Sam-Geun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.9 s.180
    • /
    • pp.2174-2183
    • /
    • 2000
  • In this paper, the evaluation method of interfacial fracture toughness to apply the fracture toughness was investigated in adhesively bonded joints of AI/Ced./A1. Four types of adhesively bonded double-cantilever beam(DCB) joints with the interface crack were prepared for the test of interfacial fracture toughness. The experiments to measure the interfacial fracture toughness were performed under the various mixed-mode conditions. The critical energy release rate, Gc, was obtained by the experimental measurement of compliances. From the experimental results, the interfacial fracture toughness for the mixed-mode specimens is well characterized by the energy release rate, and the method of strength evaluation by the interfacial fracture toughness was discussed in adhesively bonded joints.

Effect of Microstructure on Evaluation of Fracture Toughness and Hardness of Cutting Tool Ceramics (절삭 공구용 세라믹의 소결조직에 따른 파괴인성과 경도의 평가)

  • 안동길;윤명진
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.6
    • /
    • pp.170-177
    • /
    • 2000
  • Dense $Al_2$O$_3$-30%TiC and Si$_3$N$_4$ ceramic tool materials with various grain size were produced by sintering-HIP treatment and by gas-pressure sintering. The fracture toughness was measured by indentation fracture and indentation strength method for both ceramics with various grain size. The effect of the grain size on the fracture toughness was evaluated, and the correlation between fracture toughness and mechanical properties such as hardness, Young\`s modulus and flexural strength of these ceramic were also investigated. The highest fracture toughness of around 6.7 MPa.m(sup)1/2 was obtained in Si$_3$N$_4$ ceramics with grain size of 1.58${\mu}{\textrm}{m}$. With a larger grain size of $Al_2$O$_3$-30%TiC and Si$_3$N$_4$ ceramics, the fracture toughness was generally increased. The increased fracture toughness of these ceramic also improved the flexural strength although the hardness decreased considerably. Similar results were obtained in grain size and mechanical properties on both $Al_2$O$_3$-30%TiC and Si$_3$N$_4$ ceramic tool materials.

  • PDF

Influence of water saturation on fracture toughness in woven natural fiber reinforced composites

  • Kim, Hyo-Jin;Seo, Do-Won
    • Advanced Composite Materials
    • /
    • v.16 no.2
    • /
    • pp.83-94
    • /
    • 2007
  • Woven sisal textile fiber reinforced composites were used to evaluate fracture toughness, tensile and three-point bending. The water absorption testing of all specimens was repeated five times in this study. All specimens were immersed in pure water during 9 days at room temperature, and dried in 1 day at $50^{\circ}C$. Two kinds of polymer matrices such as epoxy and vinyl-ester were used. Fractured surfaces were taken to study the failure mechanism and fiber/matrix interfacial adhesion. It is shown that it can be enhanced to improve their mechanical performance to reveal the relationship between fracture toughness and water absorption fatigue according to different polymer matrices. Water uptake of the epoxy composites was found to increase with cycle times. Mechanical properties are dramatically affected by the water absorption cycles. Water-absorbed samples showed poor mechanical properties, such as lower values of maximum strength and extreme elongation. The $K_{IC}$ values demonstrated a decrease in inclination with increasing cyclic times of wetting and drying for the epoxy and vinyl-ester.

Effect of Transition Metal Oxides Addition on Yttria - stabilized Zirconia for improving Physical and Mechanical Properties

  • Park, Jaesung;Lee, Yeongshin
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.12 no.3
    • /
    • pp.25-31
    • /
    • 2016
  • Mechanical properties of Y2O3-containing tetragonal ZrO2 polycrystals(Y-TZP) were investigated. Several additives were used to modify the hardness and fracture toughness of Y-TZP. The effects of these individual additives were discussed and their interactions were also analysed. Each additive, such as CoO, Fe2O3, MnO2 was found to deteriorate the mechanical properties of Y-TZP when it was used singly. But the fracture toughness of Y-TZP was significantly improved when these additives and Al2O3 were added in combination at a certain ratio. The addition of CoO, Fe2O3 and MnO2 into Y-TZP resulted in the more complex behavior of fracture toughness and hardness. The specimen with 1.5 wt%-Fe2O3, 3.0 wt% -Al2O3 and 1.5 wt%-CoO showed the monoclinic to tetragonal phase ratio of 18% and the highest toughness of $10.8MPa{\cdot}m1/2$ with Vickers hardness of 1201 kgf/mm2. However, the toughness decreased as the ratio increased and macrocracks developed beyond the ratio of 25%. Sample No. 16 is improved high Physical and Mechanical Properties.

A Study on the Fracture Toughness Improvement of Surface-treated CFRP and Aluminum Composites (표면처리된 CFRP와 알루미늄 복합재료의 파괴인성 향상에 대한 연구)

  • Rhee, Kyong-Yop;Kim, Man-Tae;Choi, Nak-Sam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.4
    • /
    • pp.632-637
    • /
    • 2003
  • In this study, the effect of surface treatment of CFRP and aluminum on the fracture toughness of CFRP/aluminum composites was investigated. CFRP was surface-treated by Ar$^{+}$ ion beam under oxygen environment, and the aluminum was surface-treated by DC plasma. CFRP was adhesively bonded to aluminum using the secondary bonding procedure. Cracked lap shear specimens were used to determine fracture toughness. Three cases of cracked lap shear specimens were made depending on the surface treatment. The values of fracture toughness of three cases were compared to each other It was found that the fracture toughness of ion beam-treated CFRP/aluminum composites was almost 72 % higher than that of unrented CFRP/aluminum composites. The fracture toughness of CFRP/plasma-treated aluminum composites was 50 % higher than that of untreated CFRP/aluminum composites.s.

A Study on the Compliance of a Compact Tension Test Specimen (소형인장시험편의 컴플라이언스에 관한 고찰)

  • Jeong, Gi-Hyeon;Seok, Chang-Seong;Yang, Won-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.12
    • /
    • pp.3010-3017
    • /
    • 2000
  • For integrity evaluation of cracked or damaged structures, fracture toughness test results in ASTM are widely used. The fracture toughness values of the structures are used as an effective design criterion in nuclear plants and aircraft structures. Sometimes the difference of P-$\delta$ curve trend during the unloading /reloading cycle in the fracture toughness test using partial unloading compliance was observed. The phenomenon as a possible source of error in determining fracture toughness may be caused by the residual stress during unloading work-hardening and bucking of a specimen. Therefore, we evaluate the effect of bucking and compressive residual stress during the K-R and J-R testing using a finite element method.