• Title/Summary/Keyword: mechanical stress response

Search Result 454, Processing Time 0.03 seconds

Material Properties Evaluation of 1-3 type Piezo-composite Fabricated with Ceramic Injection Molding Technology (세라믹 사출성형기술로 제조한 1-3형 압전복합체의 물성 평가)

  • Shin, H.Y.;Kim, J.H.;Lim, S.J.;Im, J.I.
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.6
    • /
    • pp.648-653
    • /
    • 2011
  • Generally the piezo-composites have superior hydrostatic response characteristics than PZT ceramics due to both the stress amplification effect in axial direction and stress reduction effects in radial direction. This paper described material properties of a 1-3 type piezo-composite that fabricated with ceramic injection molding (CIM) technology. The electro-mechanical performances of the composite have been analyzed using FEM and the physical properties of the composite have been measured with the vol% of the PZT ceramics. Based on the results, the $k_t$ increased rapidly as the vol% of the PZT ceramics increased up to 30 vol% and saturated the constant value in the above region. Also the experimental results have good agreement with the simulation values of the composite. Finally we developed the composites having high piezoelectric properties than the PZT ceramics with the CIM technology.

Molecular Cloning, Phylogenetic Analysis, Expressional Profiling and In Vitro Studies of TINY2 from Arabidopsis thaliana

  • Wei, Gang;Pan, Yi;Lei, Juan;Zhu, Yu-Xian
    • BMB Reports
    • /
    • v.38 no.4
    • /
    • pp.440-446
    • /
    • 2005
  • A cDNA that was rapidly induced upon abscisic acid, cold, drought, mechanical wounding and to a lesser extent, by high salinity treatment, was isolated from Arabidopsis seedlings. It was classified as DREB subfamily member based on multiple sequence alignment and phylogenetic characterization. Since it encoded a protein with a typical ERF/AP2 DNA-binding domain and was closely related to the TINY gene, we named it TINY2. Gel retardation assay revealed that TINY2 was able to form a specific complex with the previously characterized DRE element while showed only residual affinity to the GCC box. When fused to the GAL4 DNA-binding domain, either full-length or its C-terminus functioned effectively as a trans-activator in the yeast one-hybrid assay while its N-terminus was completely inactive. Our data indicate that TINY2 could be a new member of the AP2/EREBP transcription factor family involved in activation of down-stream genes in response to environmental stress.

Effect of Garlic Extract on the Activation Pattern of MAPK Signaling in the Rat Heart After a Bout Exercise (마늘추출물이 운동부하 흰쥐의 심장내 MAPK signaling 활성에 미치는 영향)

  • Lee, Jun-Hyuk;Chung, Kyung-Tae;Lee, Yang-Tae;Choi, Yung-Hyun;Choi, Byung-Tae
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.22 no.5
    • /
    • pp.1299-1303
    • /
    • 2008
  • Since exercise training induces mechanical stress to the heart, we examined the activation pattern of mitogen-activated protein kinase(MAPK)s signaling pathway by immunohistochemistry. The immunoreactions of MAPKs signaling with c-fos and Schiff's reaction were increased in the cardiac muscle of exercised rat compared to normal one except immunoreaction for MEK1/2 and ERK1/2 and p38. However, the immunoreaction of phospho-JNK and phospho-p38 with early gene c-fos were arrested markedly in water extract of Alliium sativum (WEAS) treated rat compared to exercised one. Since MAPKs signaling does play a protective role in response to pathological stimulus in the heart, results in the present study suggest that WEAS may act as a alleviating agent for exercise-induced stress to. heart through regulating MAPKs signaling activation.

Static analysis of functionally graded sandwich plates with porosities

  • Keddouri, Ahemd;Hadji, Lazreg;Tounsi, Abdelouahed
    • Advances in materials Research
    • /
    • v.8 no.3
    • /
    • pp.155-177
    • /
    • 2019
  • In this paper, a new displacement based high-order shear deformation theory is introduced for the static response of functionally graded sandwich plate with new definition of porosity distribution taking into account composition and the scheme of the sandwich plate. Unlike any other theory, the number of unknown functions involved is only four, as against five in case of other shear deformation theories. The theory presented is variationally consistent, has strong similarity with classical plate theory in many aspects, does not require shear correction factor, and gives rise to transverse shear stress variation such that the transverse shear stresses vary parabolically across the thickness satisfying shear stress free surface conditions. Material properties of FGM layers are assumed to vary continuously across the plate thickness according to either power-law or sigmoid function in terms of the volume fractions of the constituents. The face layers are considered to be FG across each face thickness while the core is made of a ceramic homogeneous layer. Governing equations are derived from the principle of virtual displacements. The closed-form solution of a simply supported rectangular plate subjected to sinusoidal loading has been obtained by using the Navier method. Numerical results are presented to show the effect of the material distribution, the sandwich plate geometry and the porosity on the deflections and stresses of FG sandwich plates. The validity of the present theory is investigated by comparing some of the present results with other published results.

A mechanical response of functionally graded nanoscale beam: an assessment of a refined nonlocal shear deformation theory beam theory

  • Zemri, Amine;Houari, Mohammed Sid Ahmed;Bousahla, Abdelmoumen Anis;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • v.54 no.4
    • /
    • pp.693-710
    • /
    • 2015
  • This paper presents a nonlocal shear deformation beam theory for bending, buckling, and vibration of functionally graded (FG) nanobeams using the nonlocal differential constitutive relations of Eringen. The developed theory account for higher-order variation of transverse shear strain through the depth of the nanobeam, and satisfy the stress-free boundary conditions on the top and bottom surfaces of the nanobeam. A shear correction factor, therefore, is not required. In addition, this nonlocal nanobeam model incorporates the length scale parameter which can capture the small scale effect and it has strong similarities with Euler-Bernoulli beam model in some aspects such as equations of motion, boundary conditions, and stress resultant expressions. The material properties of the FG nanobeam are assumed to vary in the thickness direction. The equations of motion are derived from Hamilton's principle. Analytical solutions are presented for a simply supported FG nanobeam, and the obtained results compare well with those predicted by the nonlocal Timoshenko beam theory.

Thermomechanical Properties of Functionally Graded $Al-SiC_p$ Composites

  • Song, Dae-Hyun;Park, Yong-Ha;Park, Yong-Ho;Park, Ik-Min;Cho, Kyung-Mox
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.85-86
    • /
    • 2006
  • A theoretical model is applied to the analysis of thermomechanical properties of $Al-SiC_p$ FGMs in this study. Functionally graded $Al-SiC_p$ composites ($Al-SiC_p$ FGMs) consisted with 10 layers gradually changing volume fractions of Al and $SiC_p$ were fabricated using the pressureless infiltration technique. $Al-SiC_p$ FGMs plates of total thickness of 3mm, 5mm and 7mm with fairly uniform distribution and compositional gradient of $SiC_p$ reinforcement in the Al matrix throughout the thickness was successfully fabricated. The curvature of $Al-SiC_p$ FGM plates was measured to check the internal stress distribution predicted via a theoretical model for the analysis of thermo-mechanical deformation. The evolution of curvature and also internal stresses in response to temperature variations could be predicted for the different combinations of geometric thickness of FGM plates. Theoretical prediction of thermally induced stress distribution makes it possible to design FGM structures without any critical failure during the usage of them.

  • PDF

Seismic Stability Evaluation of Bellows Type Expansion Joints Piping System(350A) (350A 벨로우즈형 신축관이음의 내진특성 평가)

  • Son, In-Soo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.4_2
    • /
    • pp.653-659
    • /
    • 2020
  • In this study, seismic verification of the bellows used in the plant field was conducted. The pressure used in the analysis was analyzed by applying the design pressure of 15.7bar. For the seismic analysis, the natural frequency of the bellows system was obtained and the stability of the system was evaluated by static seismic analysis comparing the lowest order natural frequency with the dominant frequency of 33 Hz. The material of the bellows system is STS304, and the safety factor is obtained in comparison with the allowable stress. For the seismic analysis, the design response spectrum was prepared and the maximum acceleration was applied to the static seismic analysis and the stability of the entire system was confirmed. Compared to the structural analysis results, the maximum stress of the bellows system increased by about 16.4% and the maximum strain increased by about 3 times when seismic analysis was performed.

Experimental research on dynamic response of red sandstone soil under impact loads

  • Wang, Tong;Song, Zhanping;Yang, Jianyong;Wang, Junbao;Zhang, Xuegang
    • Geomechanics and Engineering
    • /
    • v.17 no.4
    • /
    • pp.393-403
    • /
    • 2019
  • The cycling impact test of red sandstone soil under different axial pressure and different impact loads are conducted to reveal the mechanical properties and energy consumption mechanism of red sandstone soil with static-dynamic coupling loading. The results show that: Under the action of different axial pressure and different impact loads, the peak stress of the specimen increases, and then tends to be stable with the times of impact. With the increase of impact times, the specific energy absorption value of the red sandstone soil specimen is increased first and then gentle development trend. When the impact loads are certain, the larger the axial pressure is, the smaller the peak value of energy absorption, which indicates that the energy utilization rate is not high under the condition of large axial pressure. Through the analysis of energy utilization, it is found that the smaller the impact load, the higher the energy utilization rate. The greater the axial pressure, the lower the energy utilization rate. when the axial pressure is large, the impact loads corresponding to the maximum values of reflectivity, transmissivity and absorptivity are the same. The relationship between reflectivity and transmissivity is negatively correlated.

Optimal Shape Design of ANG Fuel Vessel Applied to Composite Carbon Fiber (탄소섬유 복합재료를 적용한 ANG 연료용기의 최적 형상설계)

  • Kim, Gun-Hoi
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.1
    • /
    • pp.65-71
    • /
    • 2019
  • The development of adsorbed natural gas (ANG) has emerged as one of potential solutions. It is desirable to reduce the weight of vessel by applying light-weighed a composite carbon fiber in order to response to a egulation of $CO_2$ emission. Through understanding of a composite carbon fiber, and material characteristic of a composite carbon fiber is required in order for better application of a reduction of weight and an analysis of material characteristic. Herein, this study suggest the composite carbon fiber vessel applied to the characteristic of carbon fiber, and it decides the preliminary shape based on the test of material characteristic for ANG vessel applied to a composite carbon fiber, and its basic shape calculate through on the netting theory. Moreover, the detail shape design is analyzed by a finite element analysis, and in the stage of detail sahp design and analysis of stress was performed on the typical shape using a finite element analysis, and the result of preliminary design was verified.

Prediction of post fire load deflection response of RC flexural members using simplistic numerical approach

  • Lakhani, Hitesh;Singh, Tarvinder;Sharma, Akanshu;Reddy, G.R.;Singh, R.K.
    • Structural Engineering and Mechanics
    • /
    • v.50 no.6
    • /
    • pp.755-772
    • /
    • 2014
  • A simplistic approach towards evaluation of complete load deflection response of Reinforced Concrete (RC) flexural members under post fire (residual) scenario is presented in this paper. The cross-section of the RC flexural member is divided into a number of sectors. Thermal analysis is performed to determine the temperature distribution across the section, for given fire duration. Temperature-dependent stress-strain curves for concrete and steel are then utilized to perform a moment-curvature analysis. The moment-curvature relationships are obtained for beams exposed to different fire durations. These are then utilized to obtain the load-deflection plots following pushover analysis. Moreover one of the important issues of modeling the initial stiffness giving due consideration to stiffness degradation due to material degradation and thermal cracking has also been addressed in a rational manner. The approach is straightforward and can be easily programmed in spreadsheets. The presented approach has been validated against the experiments, available in literature, on RC beam subjected to different fire durations viz. 1hr, 1.5hrs and 2hrs. Complete load-deflection curves have been obtained and compared with experimentally reported counterparts. The results also show a good match with the results obtained using more complicated approaches such as those involving Finite element (FE) modeling and conducting a transient thermal stress analysis. Further evaluation of the beams during fire (at elevated temperatures) was performed and a comparison of the mechanical behavior of RC beams under post fire and during fire scenarios is made. Detailed formulations, assumptions and step by step approach are reported in the paper. Due to the simplicity and ease of implementation, this approach can be used for evaluation of global performance of fire affected structures.