References
- Baker, S. S., Wilhelm, K. S. and Thomashow, M. F. (1994) The 5'-region of Arabidopsis thaliana cor15a has cis-acting elements that confer cold-, drought- and ABA-regulated gene expression. Plant Mol. Biol. 24, 701-713 https://doi.org/10.1007/BF00029852
- Blank, V. and Andrews, N. C. (1997) The Maf transcription factors: regulators of differentiation. Trends Biochem. Sci. 22, 437-441 https://doi.org/10.1016/S0968-0004(97)01105-5
- Eddy, S. R. (1998) Profile hidden Markov models. Bioinformatics 14, 755-763 https://doi.org/10.1093/bioinformatics/14.9.755
- Finkelstein, R. R., Wang, M. L., Lynch, T. J., Rao, S. and Goodman, H. M. (1998) The Arabidopsis abscisic acid response locus ABI4 encodes an APETALA 2 domain protein. Plant Cell 10, 1043-1054 https://doi.org/10.1105/tpc.10.6.1043
- Friedman, J. S., Khanna, H., Swain, P. K., DeNicola, R., Cheng, H., Mitton, K. P., Weber, C. H., Hicks, D. and Swaroopa, A. (2004) The minimal transactivation domain of the basic motif-Leucine zipper transcription factor NRL interacts with TATA-binding protein. J. Biol. Chem. 279, 47233-47241 https://doi.org/10.1074/jbc.M408298200
- Fujimoto, S. Y., Ohta, M., Usui, A. and Shinshi, H. (2000) Arabidopsis ethylene-responsive element binding factors act as transcriptional activators or repressors of GCC box-mediated gene expression. Plant Cell 12, 393-404 https://doi.org/10.1105/tpc.12.3.393
- Gerber, H. P., Seipel, K., Georgiev, O., Hofferer, M., Hug, M., Rusconi, S. and Schaffner, W. (1994) Transcriptional activation modulated by homopolymeric glutamine and proline stretches. Science 263, 808-811 https://doi.org/10.1126/science.8303297
- Gilmour, S. J., Zarka, D. G., Stockinger, E. J., Salazar, M. P., Houghton, J. M. and Thomashow, M. F. (1998) Low temperature regulation of Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. Plant J. 16, 433-442 https://doi.org/10.1046/j.1365-313x.1998.00310.x
- Haarke, V., Cook, D., Riechmann, J. L., Omaira, P., Thomashow, M. F. and Zang, J. Z. (2002) Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis. Plant Physiol. 130, 639-648 https://doi.org/10.1104/pp.006478
- Hajela, R. K., Horvath, D. P., Gilmour, S. J. and Thomashow, M. F. (1990) Molecular cloning and expression of cor (coldregulated) genes in Arabidopsis thaliana. Plant Physiol. 93, 1246-1252 https://doi.org/10.1104/pp.93.3.1246
- Iwasaki, T., Kiyosue, T., Yamaguchi-Shinozaki, K. and Shinozaki, K. (1997) The dehydration-inducible rd17 (cor47) gene and its promoter region in Arabidopsis thaliana. Plant Physiol. 115, 1287 https://doi.org/10.1104/pp.115.3.1287
- Jaglo-Ottosen, K. R., Gilmour, S. J., Zarka, D. G.., Schabenberger, O. and Thomashow, M. F. (1998) Arabidopsis CBF1 overexpression induces cor genes and enhances freezing tolerance. Science 280, 104-106 https://doi.org/10.1126/science.280.5360.104
- Kiyosue, T., Yamaguchi-Shinozaki, K. and Shinozaki, K. (1994) Cloning of cDNAs for genes that are early-responsive to dehydration stress (ERDs) in Arabidopsis thaliana L.: Identification of three ERDs as HSP cognate genes. Plant Mol. Biol. 25, 791-798 https://doi.org/10.1007/BF00028874
- Kurkela, S. and Borg-Franck, M. (1992) Structure and expression of kin2, one of two cold- and ABA-induced genes of Arabidopsis thaliana. Plant Mol. Biol. 19, 689-692 https://doi.org/10.1007/BF00026794
- Liu, Q., Kasuga, M., Sakuma, Y., Abe, H., Miura, S., Yamaguchi-Shinozaki, K. and Shinozaki, K. (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10, 1391-1406 https://doi.org/10.1105/tpc.10.8.1391
- Nordin, K., Vahala, T. and Palva, E. T. (1993) Differential expression of two related, low-temperature-induced genes in Arabidopsis thaliana (L.) Heynh. Plant Mol. Biol. 21, 641-653 https://doi.org/10.1007/BF00014547
- Okamuro, J. K., Caster, B., Villarroel, R., Van Montagu, M. and Jofuku, K. D. (1997) The AP2 domain of APETALA2 defines a large new family of DNA binding proteins in Arabidopsis. Proc. Natl. Acad. Sci. USA 94, 7076-7081 https://doi.org/10.1073/pnas.94.13.7076
- Sakuma, Y., Liu, Q., Dubouzet, J. G., Abe, H., Shinozaki, K. and Yamaguchi-Shinozaki, K. (2002) DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression. Biochem. Biophys. Res. Commun. 290, 998-1009 https://doi.org/10.1006/bbrc.2001.6299
- Shinozaki, K. and Yamaguchi-Shinozaki, K. (2000) Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Curr. Opin. Plant Biol. 3, 217-223 https://doi.org/10.1016/S1369-5266(00)80068-0
- Stockinger, E. J., Gilmour, S. J. and Thomashow, M. F. (1997) Arabidopsis thaliana CBF1 encodes an AP2 domain–containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc. Natl. Acad. Sci. USA 94, 1035-1040 https://doi.org/10.1073/pnas.94.3.1035
- Thompson, J. D., Higgins, D. G. and Gibson, T. J. (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673-4680 https://doi.org/10.1093/nar/22.22.4673
- Uno, Y., Furihata, T., Abe, H., Yoshida, R., Shinozaki, K. and Yamaguchi-Shinozaki, K. (2000) Arabidopsis basic leucine zipper transcription factors involved in an abscisic aciddependent signal transduction pathway under drought and highsalinity conditions Proc. Natl. Acad. Sci. USA 97, 11632-11637 https://doi.org/10.1073/pnas.190309197
- Wang, H., Datla, R., Georges, F., Loewen, M. and Cutler, A. J. (1995) Promoters from Kin1 and cor6.6, two homologous Arabidopsis thaliana genes: Transcriptional regulation and gene expression induced by low temperature, ABA osmoticum and dehydration. Plant Mol. Biol. 28, 605-617 https://doi.org/10.1007/BF00021187
- Wilson, K., Long, D., Swinburne, J. and Coupland, G. (1996) A dissociation insertion causes a semidominant mutation that increases expression of TINY, an Arabidopsis gene related to APETALA2. Plant Cell 8, 659-671 https://doi.org/10.1105/tpc.8.4.659
- Xiong, L., Schumaker, K. S. and Zhu, J. K. (2002) Cell signaling during cold, drought, and salt stress, Plant Cell 14, 165-183 https://doi.org/10.1105/tpc.010278
- Yamaguchi-Shinozaki, K. and Shinozaki, K. (1993) Characterization of the expression of a desiccation-responsive rd29 gene of Arabidopsis thaliana and analysis of its promoter in transgenic plants. Mol. Gen. Genet. 236, 331-340 https://doi.org/10.1007/BF00277130
- Yamaguchi-Shinozaki, K. and Shinozaki, K. (1994) A novel cisacting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell 6, 251-264 https://doi.org/10.1105/tpc.6.2.251
- Ye, R., Yao, Q. H., Xu, Z. H. and Xue, H. W. (2004) Development of an efficient method for the isolation of factors involved in gene transcription during rice embryo development. Plant J. 38, 348-357 https://doi.org/10.1111/j.1365-313X.2004.02037.x
- Yoshida, R., Hobo, T., Ichimura, K., Mizoguchi, T., Takahashi, F., Alonso, J., Ecker, J. R. and Shinozaki, K. (2002) ABAactivated SnRK2 protein kinase is required for dehydration stress signaling in Arabidopsis. Plant Cell Physiol. 43, 1473-1483 https://doi.org/10.1093/pcp/pcf188
Cited by
- Function of Gene OsASIE1 in Response to Abiotic Stress in Rice vol.37, pp.10, 2011, https://doi.org/10.1016/S1875-2780(11)60048-5
- Identification and Quantitative Analysis of Significantly Accumulated Proteins During the Arabidopsis Seedling De-etiolation Process vol.48, pp.1, 2006, https://doi.org/10.1111/j.1744-7909.2006.00215.x
- Molecular cloning and characterization of two novel DREB genes encoding dehydration-responsive element binding proteins in halophyte Suaeda salsa vol.37, pp.2, 2015, https://doi.org/10.1007/s13258-014-0238-1
- The Development of Protein Microarrays and Their Applications in DNA–Protein and Protein–Protein Interaction Analyses of Arabidopsis Transcription Factors vol.1, pp.1, 2008, https://doi.org/10.1093/mp/ssm009
- Cloning of four DREB genes from Tibetan Sophora moorcroftiana and analysis of their expression during abiotic stress vol.27, pp.3, 2016, https://doi.org/10.1007/s11676-015-0179-9
- Identification and functional characterization of ten AP2/ERF genes in potato vol.123, pp.1, 2015, https://doi.org/10.1007/s11240-015-0823-2
- Resistance ofMalus domesticaFruit toBotrytis cinereaDepends on Endogenous Ethylene Biosynthesis vol.101, pp.11, 2011, https://doi.org/10.1094/PHYTO-03-11-0087
- Cloning and functional characterization of PpDBF1 gene encoding a DRE-binding transcription factor from Physcomitrella patens vol.226, pp.4, 2007, https://doi.org/10.1007/s00425-007-0529-8
- A Novel Dehydration-Responsive Element-Binding Protein from Caragana korshinskii Is Involved in the Response to Multiple Abiotic Stresses and Enhances Stress Tolerance in Transgenic Tobacco vol.28, pp.4, 2010, https://doi.org/10.1007/s11105-010-0196-y
- Identification of the amino acids crucial for the activities of drought responsive element binding factors (DREBs) ofBrassica napus vol.581, pp.16, 2007, https://doi.org/10.1016/j.febslet.2007.05.067
- A unique program for cell death in xylem fibers ofPopulusstem vol.58, pp.2, 2009, https://doi.org/10.1111/j.1365-313X.2008.03777.x
- The CBF gene family in hexaploid wheat and its relationship to the phylogenetic complexity of cereal CBFs vol.277, pp.5, 2007, https://doi.org/10.1007/s00438-006-0206-9
- Isolation and characterization of a dehydration responsive element binding factor MsDREBA5 in Malus sieversii Roem. vol.142, 2012, https://doi.org/10.1016/j.scienta.2012.05.020
- Parental RNA is Significantly Degraded During Arabidopsis Seed Germination vol.48, pp.1, 2006, https://doi.org/10.1111/j.1744-7909.2006.00216.x
- Post-translational modifications, but not transcriptional regulation, of major chloroplast RNA-binding proteins are related toArabidopsis seedling development vol.6, pp.8, 2006, https://doi.org/10.1002/pmic.200500657
- Roles for jasmonate- and ethylene-induced transcription factors in the ability of Arabidopsis to respond differentially to damage caused by two insect herbivores vol.5, 2014, https://doi.org/10.3389/fpls.2014.00407
- Identification and characterization of the novel gene GhDBP2 encoding a DRE-binding protein from cotton (Gossypium hirsutum) vol.165, pp.2, 2008, https://doi.org/10.1016/j.jplph.2006.11.003
- Ethylene negatively regulates transcript abundance of ROP-GAP rheostat-encoding genes and affects apoplastic reactive oxygen species homeostasis in epicarps of cold stored apple fruits vol.66, pp.22, 2015, https://doi.org/10.1093/jxb/erv422
- Cloning and functional analysis of the novel gene GhDBP3 encoding a DRE-binding transcription factor from Gossypium hirsutum vol.1759, pp.6, 2006, https://doi.org/10.1016/j.bbaexp.2006.04.006
- Deep transcriptome sequencing of rhizome and aerial-shoot in Sorghum propinquum vol.84, pp.3, 2014, https://doi.org/10.1007/s11103-013-0135-z
- Function Analysis of Gene OsASIE1 Responding to Abiotic Stresses in Rice vol.37, pp.10, 2011, https://doi.org/10.3724/SP.J.1006.2011.01771
- Overexpression of StDREB1 Transcription Factor Increases Tolerance to Salt in Transgenic Potato Plants vol.54, pp.3, 2013, https://doi.org/10.1007/s12033-012-9628-2
- Genome-Wide Analysis and Expression Profiling of the ERF Transcription Factor Family in Potato (Solanum tuberosum L.) vol.57, pp.4, 2015, https://doi.org/10.1007/s12033-014-9828-z
- Angiosperm-Wide and Family-Level Analyses of AP2/ERF Genes Reveal Differential Retention and Sequence Divergence After Whole-Genome Duplication vol.10, pp.1664-462X, 2019, https://doi.org/10.3389/fpls.2019.00196