• 제목/요약/키워드: mechanical stress response

검색결과 454건 처리시간 0.019초

Effect of compressible membrane's nonlinear stress-strain behavior on spiral case structure

  • Zhang, Qi-Ling;Wu, He-Gao
    • Structural Engineering and Mechanics
    • /
    • 제42권1호
    • /
    • pp.73-93
    • /
    • 2012
  • With an active structural involvement in spiral case structure (SCS) that is always the design and research focus of hydroelectric power plant (HPP), the compressible membrane sandwiched between steel spiral case and surrounding reinforced concrete was often assumed to be linear elastic material in conventional design analysis of SCS. Unfortunately considerable previous studies have proved that the foam material serving as membrane exhibits essentially nonlinear mechanical behavior. In order to clarify the effect of membrane (foam) material's nonlinear stress-strain behavior on SCS, this work performed a case study on SCS with a compressible membrane using the ABAQUS code after a sound calibration of the employed constitutive model describing foam material. In view of the successful capture of fitted stress-strain curve of test by the FEM program, we recommend an application and dissemination of the simulation technique employed in this work for membrane material description to structural designers of SCS. Even more important, the case study argues that taking into account the nonlinear stress-strain response of membrane material in loading process is definitely essential. However, we hold it unnecessary to consider the membrane material's hysteresis and additionally, employment of nonlinear elastic model for membrane material description is adequate to the structural design of SCS. Understanding and accepting these concepts will help to analyze and predict the structural performance of SCS more accurately in design effort.

A numerical framework of the phenomenological plasticity and fracture model for structural steels under monotonic loading

  • He, Qun;Yam, Michael C.H.;Xie, Zhiyang;Lin, Xue-Mei;Chung, Kwok-Fai
    • Steel and Composite Structures
    • /
    • 제44권4호
    • /
    • pp.587-602
    • /
    • 2022
  • In this study, the classical J2 flow theory is explicitly proved to be inappropriate to describe the plastic behaviour of structural steels under different stress states according to the reported test results. A numerical framework of the characterization of the strain hardening and ductile fracture initiation involving the effect of stress states, i.e., stress triaxiality and Lode angle parameter, is proposed based on the mechanical response of structural steels under monotonic loading. Both effects on strain hardening are determined by correction functions, which are implemented as different modules in the numerical framework. Thus, other users can easily modify them according to their test results. Besides, the ductile fracture initiation is determined by a fracture locus in the space of stress triaxiality, Lode angle parameter, and fracture strain. The numerical implementation of the proposed model and the corresponding code are provided in this paper, which are also available on GitHub. The validity of the numerical procedure is examined through single element tests and the accuracy of the proposed model is verified by existing test results.

Stochastic optimal control analysis of a piezoelectric shell subjected to stochastic boundary perturbations

  • Ying, Z.G.;Feng, J.;Zhu, W.Q.;Ni, Y.Q.
    • Smart Structures and Systems
    • /
    • 제9권3호
    • /
    • pp.231-251
    • /
    • 2012
  • The stochastic optimal control for a piezoelectric spherically symmetric shell subjected to stochastic boundary perturbations is constructed, analyzed and evaluated. The stochastic optimal control problem on the boundary stress output reduction of the piezoelectric shell subjected to stochastic boundary displacement perturbations is presented. The electric potential integral as a function of displacement is obtained to convert the differential equations for the piezoelectric shell with electrical and mechanical coupling into the equation only for displacement. The displacement transformation is constructed to convert the stochastic boundary conditions into homogeneous ones, and the transformed displacement is expanded in space to convert further the partial differential equation for displacement into ordinary differential equations by using the Galerkin method. Then the stochastic optimal control problem of the piezoelectric shell in partial differential equations is transformed into that of the multi-degree-of-freedom system. The optimal control law for electric potential is determined according to the stochastic dynamical programming principle. The frequency-response function matrix, power spectral density matrix and correlation function matrix of the controlled system response are derived based on the theory of random vibration. The expressions of mean-square stress, displacement and electric potential of the controlled piezoelectric shell are finally obtained to evaluate the control effectiveness. Numerical results are given to illustrate the high relative reduction in the root-mean-square boundary stress of the piezoelectric shell subjected to stochastic boundary displacement perturbations by the optimal electric potential control.

전단시 온도 영향을 고려한 점성토의 왜곡 경계면 모델 개발 (Distorted Bounding Surface of Clay with Consideration of the Effect of Temperature on Shearing Response)

  • 우상인;윤찬영
    • 한국지반공학회논문집
    • /
    • 제36권12호
    • /
    • pp.117-124
    • /
    • 2020
  • 본 연구는 온도에 따른 점성토의 전단 변형의 특성의 모사에 초점을 맞춘다. 일반적으로 온도가 상승할수록 정규압밀선은 간극비와 평균유효응력의 평면에서 하향 이동한다. 하지만 한계상태선은 온도변화에 따라 정규압밀선만큼 이동하지는 않는다. 따라서, 온도가 증가할수록, 한계상태 평균유효응력과 선행압밀 평균유효응력의 차이는 감소한다. 이를 반영하기 위해, 본 연구에서는 한계상태 평균유효응력을 기준으로 두 부분으로 나뉘어진 경계면을 적용하였다. 또한 Bangkok 점성토에 대해서 경계면을 구축하고, 비배수 삼축압축시험에 대해서 요소해석을 실시하였다. 요소해석 결과, 제안된 모델은 복잡한 강성 혹은 발달 법칙 없이 실험 데이터와 유사한 점성토의 온도에 따른 역학적 거동을 잘 모사하였다.

스피로피란 기반 친수성 가교제를 활용한 다중 자극 감응형 하이드로젤 (Multi-responsive hydrogel cross-linked synthesized spiropyran-based hydrophilic cross-linker)

  • 정혜원;김상진;허은진;신성규;한사라;정재현
    • 한국응용과학기술학회지
    • /
    • 제38권1호
    • /
    • pp.126-135
    • /
    • 2021
  • 온도, pH, 빛 및 힘 등의 외부 자극에 반응하여 그 구조나 물리 화학적 특성이 변화 가능한 자극 감응형 하이드로젤에 대한 연구가 활발하게 진행되고 있다. 본 연구에서는 응력 감응형 분자인 스피로피란을 사용하여 응력 및 pH 감응형 하이드로젤을 제조하였다. 먼저, 폴리에틸렌 다이아크릴레이트(PEGDA)를 스피로피란 분자 양 끝에 접목시켜, 수용액에 쉽게 용해될 뿐만 아니라 하이드로젤 가교제 역할이 가능한 아령모양(PEG-spiropyran-PEG)의 SP-PEGDA 분자를 합성하였다. 이렇게 합성한 SP-PEGDA로 가교된 하이드로젤은 팽윤에 의해 발생하는 내부 응력에 의해 노란색의 스피로피란(SP) 분자를 보라색의 메로사인(MC) 형태로 변환시켰다. 또한 pH에 따라 양성화된 메로사인(MCH) 형태로 변환하여 팽윤과 수축을 시각화 하였다.

Streamlined Shape of Endothelial Cells

  • Chung, Chan-Il;Chang, Jun-Keun;Min, Byoung-Goo;Han, Dong-Chul
    • Journal of Mechanical Science and Technology
    • /
    • 제14권8호
    • /
    • pp.861-866
    • /
    • 2000
  • Flow induced shape change is important for spatial interpretation of vascular response and for understanding of mechanotransduction in a single cell. We investigated the possible shapes of endothelial cell (EC) in a mathematical model and compared these with experimental results. The linearized analytic solution from the sinusoidal wavy wall and Stokes flow was applied with the constraint of EC volume. The three dimensional structure of the human umbilical vein endothelial cell was visualized in static culture or after various durations of shear stress (20 $dyne/cm^2$ for 5, 10, 20, 40, 60, 120min). The shape ratio (width: length: height) of model agreed with that of the experimental result, which represented the drag force minimizing shape of stream-lining. EC would be streamlined in order to accommodate to the shear flow environmented by active reconstruction of cytoskeletons and membranes through a drag force the sensing mechanism.

  • PDF

전기-기계적으로 연성된 재료의 분극역전 거동에 대한 유한요소 모델링 (Finite Element Modeling of Polarization Switching in Electro-Mechanically Coupled Materials)

  • 김상주
    • 대한기계학회논문집A
    • /
    • 제25권11호
    • /
    • pp.1697-1704
    • /
    • 2001
  • A finite element model for polarization switching in electro-mechanically coupled materials is proposed and applied to predict the switching behavior of a two-dimensional ferroelectric ceramic. A complicated micro-structure existing in the material is modeled as il continuum body and a simple 3 node triangle finite element with nodal displacement and voltage degrees of freedom is used for a finite element analysis. The elements use nonlinear constitutive equations, switching criterion and kinetic relation, fur representation of material response at strong electric and stress fields. The polarization state of the material is represented by internal variables in each element, which are updated at each simulation step based on the proposed constitutive equations. The model reproduces strain and electric displacement hysteresis loops observed in the material.

Two-dimensional Elastic Analysis of Doubly Periodic Circular Holes in Infinite Plane

  • Lee, Kang-Yong;Chen, Yi-Zhou
    • Journal of Mechanical Science and Technology
    • /
    • 제16권5호
    • /
    • pp.655-665
    • /
    • 2002
  • Two-dimensional elastic analysis of doubly periodic circular holes in an infinite plane is given in this paper. Two cases of loading, remote tension and remote shear, are considered. A rectangular cell is cut from the infinite plane. In both cases, the boundary value problem can be reduced to a complex mixed one. It is found that the eigenfunction expansion variational method is efficient to solve the problem. Based on the deformation response under certain loading, the notched medium could be modeled by an orthotropic medium without holes. Elastic properties for the equivalent orthotropic medium are investigated, and the stress concentration along the hole contour is studied. Finally, numerical examples and results are given.

Mechanical behavior of an underground research facility in Korea Atomic Energy Research Institute

  • Kwon S.K.;Cho W.J.;Hahn P.S.
    • 한국방사성폐기물학회:학술대회논문집
    • /
    • 한국방사성폐기물학회 2005년도 Proceedings of The 6th korea-china joint workshop on nuclear waste management
    • /
    • pp.245-252
    • /
    • 2005
  • An underground research facility (KURF) is under construction at KAERI for the in situ studies related to the validation of a HLW disposal system. For the safe construction and long-term researches at KURF, mechanical stability of the facility should be evaluated. In this study, 3D mechanical stability analysis using the rock mass properties determined from various in situ as well as laboratory tests was carried out. From the analysis, it was possible to predict the rock deformation, stress concentration, and plastic zone developed before and after the excavation. A test blasting was performed to characterize the site dependent dynamic response, which can be used for the prediction of the blasting impact on the facilities in KAERI.

  • PDF

BLDC 전동기의 전자기적 불평형력을 고려한 편심 회전자의 동적 거동 해석 (Dynamic Behavior Analysis of an Eccentric Rotor with Unbalanced Magnetic Forces in BLDC Motors)

  • 김태종;황상문;박노길
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제48권11호
    • /
    • pp.604-610
    • /
    • 1999
  • Vibration of a rotor-bearing system driven by an electric motor is a coupled phenomenon between mechanical characteristics and magnetic origins through the air-gap. With the advent of new high-energy magnets together with high precision motor applications, magnetic sources of vibration are becoming more serious. This paper investigates the transient whirl responses of a rotor system with purely mechanical origins and compares it with that of magnetically coupled origins. A perturbation method is applied to model the magnetic field associated with rotor eccentricity. Electromagnetic forces are obtained by the Maxwell stress method, which utilizes the analytical expression of radial flux density distribution. The FEM was applied to a rotor-motor system to illustrate magnetically coupled effects in rotor dynamics. Results show that magnetically coupled sources significantly affect the vibration of the rotor-motor system.

  • PDF