• Title/Summary/Keyword: mechanical resistance

Search Result 4,079, Processing Time 0.041 seconds

FRACTURE STRENGTH AND FRACTURE MODE OF RESIN ROOT ANALOGS RESTORED WITH VARIOUS POST AND CORE MATERIALS

  • Lee, Byung-Chul;Han, Jung-Suk;Lee, Jai-Bong;Yang, Jae-Ho;Lee, Sun-Hyung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.40 no.3
    • /
    • pp.287-295
    • /
    • 2002
  • Statement of Problem. Endodontically treated teeth frequently required posts and cores to provide retention and resistance form for crowns. In spite of excellent mechanical properties of metal post and core, its metallic color can be detected through all ceramic restorations occasionally. To solve esthetic problems of metal post and core zirconia post system has been introduced recently. Purpose. The purpose of this study was to examine the fracture strength and mode of resin root analogs restored with zirconia, gold and titanium posts with resin, ceramic and metal cores after cementation with metal crowns. Materials and methods. To avoid the morphological variations of natural teeth, 40 root analogs were fabricated with composite resin. Forty resin root analogs were randomly assigned to four groups according to post and core materials: Group A: cast gold post and core and complete cast crowns, as control. Group B: titanium posts (Parapost, Coltent/Whaledent Inc., NJ, USA) and composite resin cores. Group C: zirconia posts (Cosmopost, Ivoclar AG, Schaan/Liechtenstein) and composite resin cores Group D: zirconia posts and heat-pressed ceramic cores (IPS Empress Cosmo Ingots, Ivoclar AG) After thermocycling ($5^{\circ}C{\sim}55^{\circ}C$, 30 sec.), cyclic loading was applied at 3mm below the incisal edge on the palatal surfaces at an angle of 135 degree to the long axis (2Hz, 50N, 50000cycles). Fracture strength was measured by universal testing machine (Instron, High Wycombe, UK) and fracture pattern of restored resin root analogs was also evaluated. Results and conclusion. Within the limitations of this study following results were drawn. 1. Resin root analogs restored with zirconia posts and composite resins demonstrated lowest fracture strength among tested groups. 2. There was no significant difference in the fracture strength between zirconia posts and heat pressed glass ceramic cores and cast gold posts and cores 3. The fracture strength of resin root analogs restored with titanium posts and composite resin cores was lower than that of gold posts and cores. 4. The deep oblique fracture lines were dominantly observed in root analogs restored with cast gold post and core and zirconia post and heat-pressed ceramic core groups.

A STUDY ON THE PHYSICAL PROPERTIES AND VOLUMETRIC STABILITY OF SR-IVOCAP RESIN SYSTEM (SR-Ivocap resin system의 물리적 특성과 체적 안정성에 관한 연구)

  • Eun, Sung-Sik;Kweon, Hyeog-Sin;Chung, Chae-Heon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.36 no.3
    • /
    • pp.453-467
    • /
    • 1998
  • This study helps to clarify conflicting reports by comparing the physical properties and accuracy of complete denture processed by the pack and press technique, continuous- pressure injection technique(SR-Ivocap system) and Mark press technique. The 6 different specimens have been evaluated using the SEM, Impact test, DSC (Differential Scanning Calorimetry) and DMTA (Dynamic Mechanical Thermal Analysis). Each sample was made of SR-Ivocap resin and QC-20 resin by different processing methods. The results were as follows ; 1. As the result of the observation on the fracture surface of resin by use of SEM, sample SR-Ivocap resin cured by continuous pressure injection method showed the most homogeneous structure. This is why molecules in SR-Ivocap resin have no orientation. 2. As the result of the Impact test in order to measure the deformity, fracture energy and impact resistance of resin, the samples with QC-20 acrylic resin and SR-Ivocap resin cured by continuous pressure injection method were exellent. 3. In consequence of measuring ${\alpha}$-glass transition temperature by use of DSC on the basis of temperature change, the glass transition temperatures of sample QC-20 resin cured by pack and press method and sample SR-Ivocap resin cured by continuous pressure injection method were very similar. Thus volumetric stability could not be evaluated only by glass transition temperature. 4. In comparing volumetric stability data by DMTA, the glass transition temperature(Tg) showed $137.88^{\circ}C$ at sample QC-20 resin cured by pack and press method and $139.78^{\circ}C$ at sample SR-Ivocap resin cured by continuous pressure injection method. Therefore sample SR-Ivocap resin cured by continuous pressure injection method seems to be superior to sample QC-20 resin cured by pack and press method in the dimensional stability at high temperature. 5. In comparing storage modulus data by DMTA, the storage modulus of sample SR-Ivocap resin cured by continuous pressure injection method was higher than that of sample QC-20 resin cured by pack and press method. So. sample SR-Ivocap resin cured by continuous pressure injection method seems to be superior to sample QC-20 resin cured by pack and press method in impact strength.

  • PDF

Electrochemical Characteristics of Zn and Si Ion-doped HA Films on Ti-6Al-4V by PEO Treatment

  • Lim, Sang-Gyu;Hwang, In-Jo;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.199-199
    • /
    • 2016
  • Commercially pure titanium (cp-Ti) and Ti alloys (typically Ti-6Al-4V) display excellent corrosion resistance and biocompatibility. Although the chemical composition and topography are considered important, the mechanical properties of the material and the loading conditions in the host have, conventionally. Ti and its alloys are not bioactive. Therefore, they do not chemically bond to the bone, whereas they physically bond with bone tissue. The electrochemical deposition process provides an effective surface for biocompatibility because large surface area can be served to cell proliferation. Electrochemical deposition method is an attractive technique for the deposition of hydroxyapatite (HAp). However, the adhesions of these coatings to the Ti surface needs to be improved for clinical used. Plasma electrolyte oxidation (PEO) enables control in the chemical com position, porous structure, and thickness of the $TiO_2$ layer on Ti surface. In addition, previous studies h ave concluded that the presence of $Ca^{+2}$ and ${PO_4}^{3-}$ ion coating on porous $TiO_2$ surface induced adhesion strength between HAp and Ti surface during electrochemical deposition. Silicon (Si) in particular has been found to be essential for normal bone and cartilage growth and development. Zinc (Zn) plays very important roles in bone formation and immune system regulation, and is also the most abundant trace element in bone. The objective of this work was to study electrochemical characteristcs of Zn and Si coating on Ti-6Al-4V by PEO treatment. The coating process involves two steps: 1) formation of porous $TiO_2$ on Ti-6Al-4V at high potential. A pulsed DC power supply was employed. 2) Electrochemical tests were carried out using potentiodynamic and AC impedance methoeds. The morphology, the chemical composition, and the micro-structure an alysis of the sample were examined using FE-SEM, EDS, and XRD. The enhancements of the HAp forming ability arise from $Si/Zn-TiO_2$ surface, which has formed the reduction of the Si/Zn ions. The promising results successfully demonstrate the immense potential of $Si/Zn-TiO_2$ coatings in dental and biomaterials applications.

  • PDF

Evaluation of Weld Defects in Stainless Steel 316L Pipe Using Guided Wave (스테인레스 316L강의 배관용접결함에 대한 유도초음파 특성 평가)

  • Lee, Jin-Kyung;Lee, Joon-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.35 no.1
    • /
    • pp.46-51
    • /
    • 2015
  • Stainless steel is a popular structural materials for liquid-hydrogen storage containers and piping components for transporting high-temperature fluids because of its superior material properties such as high strength and high corrosion resistance at elevated temperatures. In general, tungsten inert gas (TIG) arc welding is used for bonding stainless steel. However, it is often reported that the thermal fatigue cracks or initial defects in stainless steel after welding decreases the reliability of the material. The objective of this paper is to clarify the characteristics of ultrasonic guided wave propagation in relation to a change in the initial crack length in the welding zone of stainless steel. For this purpose, three specimens with different artificial defects of 5 mm, 10 mm, and 20 mm in stainless steel welds were prepared. By considering the thickness of s stainless steel pipe, special attention was given to both the L(0,1) mode and L(0,2) mode in this study. It was clearly found that the L(0,2) mode was more sensitive to defects than the L(0,1) mode. Based on the results of the L(0,1) and L(0,2) mode analyses, the magnitude ratio of the two modes was more effective than studying each mode when evaluating defects near the welded zone of stainless steel because of its linear relationship with the length of the artificial defect.

Effect of In Situ YAG on Properties of the Pressureless-Sintered SiC-$ZrB_2$ Electroconductive Ceramic Composites (상압소결(常壓燒結)한 SiC-$ZrB_2$ 전도성(電導性) 복합체(複合體)의 특성(特性)에 미치는 In Situ YAG의 영향(影響))

  • Shin, Yong-Deok;Ju, Jin-Young;Ko, Tae-Hun;Lee, Jung-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.11
    • /
    • pp.2015-2022
    • /
    • 2008
  • The effect of content of $Al_2O_3+Y_2O_3$ sintering additives on the densification behavior, mechanical and electrical properties of the pressureless-sintered $SiC-ZrB_2$ electroconductive ceramic composites was investigated. The $SiC-ZrB_2$ electroconductive ceramic composites were pressurless-sintered for 2 hours at 1,700[$^{\circ}C$] temperatures with an addition of $Al_2O_3+Y_2O_3$(6 : 4 mixture of $Al_2O_3$ and $Y_2O_3$) as a sintering aid in the range of $8\;{\sim}\;20$[wt%]. Phase analysis of $SiC-ZrB_2$ composites by XRD revealed mostly of $\alpha$-SiC(6H), $ZrB_2$ and In Situ YAG($Al_5Y_3O_{12}$). The relative density, flexural strength, Young's modulus and vicker's hardness showed the highest value of 89.02[%], 81.58[MPa], 31.44[GPa] and 1.34[GPa] for $SiC-ZrB_2$ composites added with 16[wt%] $Al_2O_3+Y_2O_3$ additives at room temperature respectively. Abnormal grain growth takes place during phase transformation from $\beta$-SiC into $\alpha$-SiC was correlated with In Situ YAG phase by reaction between $Al_2O_3$ and $Y_2O_3$ additive during sintering. The electrical resistivity showed the lowest value of $3.l4{\times}10^{-2}{\Omega}{\cdot}cm$ for $SiC-ZrB_2$ composite added with 16[wt%] $Al_2O_3+Y_2O_3$ additives at 700[$^{\circ}C$]. The electrical resistivity of the $SiC-TiB_2$ and $SiC-ZrB_2$ composite was all negative temperature coefficient resistance (NTCR) in the temperature ranges from room temperature to 700[$^{\circ}C$]. Compositional design and optimization of processing parameters are key factors for controlling and improving the properties of SiC-based electroconductive ceramic composites.

Study of Temperature Compensation method in Mini-Cones (소형 콘의 온도보상 기법 연구)

  • Yoon, Hyung-Koo;Jung, Soon-Hyuck;Cho, Se-Hyun;Lee, Jong-Sub
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.1C
    • /
    • pp.29-38
    • /
    • 2011
  • The smaller diameter cone penetrometer has been widely used to estimate the characteristics of local area due to high vertical resolution. The half-bridge cirucits have been adopted to measure the mechnical strength of soil through the smaller diameter cone penetrometer due to the limitation of the areas for configuring the full-bridge circuit. The half-bridge circuit, however, is known as being easily affected to the temperature variation. The objective of this study suggests the temperature-compensated method in mini-cones. The diameter and length of the mini-cone is designed to 15mm and 56mm. The load cell of the mini-cone is extended about 54mm on the behind of the mini-cone to reflect the only temperature variation. The full-bridge circuit is installed to measure the temperature-compensated values in the mini-cone and the half-bridge circuit is also organized to compare the temperature compensated values with uncompensated values. The seasonal variation tests are performed to define the effect of temperature variation under summer and winter temperature condition. The densification tests are also carried out to investigate temperature effects during penetration. The measured mechanical resistances with temperature-compensated method show more reliable and reasonable values than those measured by thermal uncompensated system. This study suggests that the temperature-compensated method of the mini-cone may be a useful technique to obtain the more reliable resistances with minimizing the temperature effect.

Development of Electroconductive SiC-$ZrB_2$ Ceramic Heater and Electrod by Spark Plasma Sintering (SPS에 의한 SiC-$ZrB_2$계 전도성 세라믹 발열체 및 전극 개발)

  • Shin, Yong-Deok;Ju, Jin-Young;Kim, Jae-Jin;Lee, Jung-Hoon;Kim, Cheol-Ho;Choi, Won-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1254_1255
    • /
    • 2009
  • The composites were fabricated by adding 30, 35, 40, 45[vol.%] Zirconium Diboride(hereafter, $ZrB_2$) powders as a second phase to Silicon Carbide(hereafter, SiC) matrix. The physical, mechanical and electrical properties of electroconductive SiC ceramic composites by Spark Plasma Sintering(hereafter, SPS) were examined. Reactions between $\beta$-SiC and $ZrB_2$ were not observed in the XRD analysis. The relative density of SiC+30[vol.%]$ZrB_2$, SiC+35[vol.%]$ZrB_2$, SiC+40[vol.%]$ZrB_2$ and SiC+45[vol.%]$ZrB_2$ composites are 88.64[%], 76.80[%], 79.09[%] and 88.12[%], respectively. The XRD phase analysis of the electroconductive SiC ceramic composites reveals high of SiC and $ZrB_2$ and low of $ZrO_2$ phase. The electrical resistivity of SiC+30[vol.%]$ZrB_2$, SiC+35[vol.%]$ZrB_2$, SiC+40[vol.%]$ZrB_2$ and SiC+45[vol.%]$ZrB_2$ composites are $6.74{\times}10^{-4}$, $4.56{\times}10^{-3}$, $1.92{\times}10^{-3}$ and $4.95{\times}10^{-3}[{\Omega}{\cdot}cm]$ at room temperature, respectively. The electrical resistivity of SiC+30[vol.%]$ZrB_2$, SiC+35[vol.%]$ZrB_2$, SiC+40[vol.%]$ZrB_2$ and SiC+45[vol.%]$ZrB_2$ are Positive Temperature Coefficient Resistance(hereafter, PTCR) in temperature ranges from 25[$^{\circ}C$] to 500[$^{\circ}C$]. It is convinced that SiC+40[vol.%]$ZrB_2$ composite by SPS can be applied for heater or electrode.

  • PDF

Functional Improvement of Hot Melt Adhesive Using Polyamide Type Resin - (II) The Effects of Terpene Resin - (폴리아미드계 수지를 이용한 핫멜트 접착제의 기능향상 - (II) 테르펜수지의 영향 -)

  • Chung, Kyung-Ho;Hong, Young-Keun;Chun, Young-Sik
    • Applied Chemistry for Engineering
    • /
    • v.9 no.2
    • /
    • pp.226-231
    • /
    • 1998
  • Hot melt adhesive which is solventless type has been widely used due to the possibility of automated adhesion process. The main purpose of this study is the development of polyamide based hot melt adhesive to improve the property of conventional ethylene-vinyl acetate hot melt adhesive, which has an inherent problem against heat resistance. In this study, it was found that the terpolymers of nylon 6, nylon 66, and nylon 12(CM831, 843P types) instead of nylon homopolymer were suitable base resins for hot melt adhesive, since the disruption of regularity in the polymer chains reduced the crystallinity, resulting in lower melting point and melt viscosity. According to the results, the optimum adhesion property could be obtained by the using 75/25~50/50 weight radio of CM831/843P resin as a base resin. Terpene resin was used as tackifier to improve adhesion and wetting properties. The best result can be obtained with the 10 wt.% addition of terpene resin. The terpene resin acted as proper tackifier in this system which decreased the melt temperature and viscosity, but increased the mechanical strength of adhesive itself. Also, the rheological property of the adhesive changed from typical non-Newtonian behavior to Newtonian behavior as terpene resin was added.

  • PDF

Applications of Nanomanipulator in Nanowires (나노메니퓰레이터를 이용한 나노선의 특성평가)

  • Yoon, Sang-Won;Seo, Jong-Hyun;Ahn, Jae-Pyoung;Seong, Tae-Yeon;Lee, Kon-Bae
    • Journal of Powder Materials
    • /
    • v.16 no.2
    • /
    • pp.138-145
    • /
    • 2009
  • The combination of focused ion beam (FIB) and 4 point probe nanomanipulator could make various nano manufacturing and electrical measurements possible. In this study, we manufactured individual ZnO nanowire devices and measured those electrical properties. In addition, tensile experiments of metallic Au and Pd nanowires was performed by the same directional alignment of two nanomanipulators and a nanowire. It was confirmed from I-V curves that Ohmic contact is formed between electrodes and nanomanipulators, which is able to directly measure the electrical properties of a nanowire itself. In the mechanical tensile test, Au and Pd nanowires showed a totally different fracture behavior except the realignment from <110> to <002>. The deformation until the fracture was governed by twin for Au and by slip for Pd nanowires, respectively. The crystallographic relationship and fracture mechanism was discussed by TEM observations.

Fabrication and Characterization of Aluminum Honeycomb Panel (경량 알루미늄 허니콤 판재의 제작 및 특성 평가)

  • Kim, Kee Joo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.1
    • /
    • pp.666-671
    • /
    • 2018
  • A honeycomb panel is a plate made by attaching two surface plateson eitherside of a honeycomb core. The honeycomb plate hasexcellent specific strength and energy absorption and is suitable for use in regions where good impact resistance is required. Recently, with the increasing the need for a lightweight design to facilitate transportation, numerous studies have been conducted using aluminum honeycomb plates as body materials for vehicles such as automobiles and high-speed trains. In addition, honeycomb plates have excellent sound deadening properties, as well as excellent heat insulation and durability. Savings in weight using lightweight materials such as aluminum alloy for honeycomb panel's skin can lead to increase fuel economy and reduction in air pollution. In this study, in order to improve the design technology of the honeycomb plate material, the manufacturing technology of the aluminum honeycomb core and honeycomb plate material and various mechanical properties of the honeycomb plate were evaluated. From the results, it was found that the design of the manufacturing process of the aluminum honeycomb plate, as well as itsproduction and characteristics, were improved. The resulting excellent energy absorption capability of the honeycomb plate was due to the repetitive core buckling, indicating that the higher the compressive strength, the higher the strength per bonded area.