• Title/Summary/Keyword: mechanical reliability

Search Result 2,386, Processing Time 0.027 seconds

Robust Obstacle Detection and Avoidance Algorithm for Infrastructure-Based Vehicle Communication Under Signal Interference (중계기를 통한 다중 차량 간 통신 상황에서 신호 간섭에 강한 장애물 감지 및 회피 알고리즘)

  • Choi, Byung Chan;Kwon, Hyuk Chan;Son, Jin Hee;Nam, Haewoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.5
    • /
    • pp.574-580
    • /
    • 2016
  • In this paper, we will introduce the system that can control multiple vehicles on the road through Single Board Computers and V2I (Vehicle-To-Infrastructure). Also, we will propose the group evasive maneuver decision algorithm, which plays a critical role in deciding whether the vehicles in the system have to conduct evasive maneuvers to avoid obstacles on the road. In order to test this system, we have utilized Wi-Fi and TCP/IP for establishing the communication between multiple vehicles and the relay server, and observed their driving states on the road with obstacles. During the experiments, we have discovered that our original decision algorithm possesses high failure rate when there is frequency interference in ISM (Industrial Scientific Medical) band. In order to reduce this failure rate, we have implemented the data transition detector. This paper will focus on how the use of data transition detector can affect the reliability of the system under the frequency interference of ISM band. If this technology is improved and applied in the field, we will effectively deal with such dangerous situations as multiple collision accidents through vehicle-to-vehicle communication or vehicle-to-infrastructure communication. Furthermore, this can be applied to the autonomous driving technologies. This can be used as the reference data for the development of the similar system.

미세금형 가공을 위한 전기화학식각공정의 유한요소 해석 및 실험 결과 비교

  • Ryu, Heon-Yeol;Im, Hyeon-Seung;Jo, Si-Hyeong;Hwang, Byeong-Jun;Lee, Seong-Ho;Park, Jin-Gu
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.81.2-81.2
    • /
    • 2012
  • To fabricate a metal mold for injection molding, hot-embossing and imprinting process, mechanical machining, electro discharge machining (EDM), electrochemical machining (ECM), laser process and wet etching ($FeCl_3$ process) have been widely used. However it is hard to get precise structure with these processes. Electrochemical etching has been also employed to fabricate a micro structure in metal mold. A through mask electrochemical micro machining (TMEMM) is one of the electrochemical etching processes which can obtain finely precise structure. In this process, many parameters such as current density, process time, temperature of electrolyte and distance between electrodes should be controlled. Therefore, it is difficult to predict the result because it has low reliability and reproducibility. To improve it, we investigated this process numerically and experimentally. To search the relation between processing parameters and the results, we used finite element simulation and the commercial finite element method (FEM) software ANSYS was used to analyze the electric field. In this study, it was supposed that the anodic dissolution process is predicted depending on the current density which is one of major parameters with finite element method. In experiment, we used stainless steel (SS304) substrate with various sized square and circular array patterns as an anode and copper (Cu) plate as a cathode. A mixture of $H_2SO_4$, $H_3PO_4$ and DIW was used as an electrolyte. After electrochemical etching process, we compared the results of experiment and simulation. As a result, we got the current distribution in the electrolyte and line profile of current density of the patterns from simulation. And etching profile and surface morphologies were characterized by 3D-profiler(${\mu}$-surf, Nanofocus, Germany) and FE-SEM(S-4800, Hitachi, Japan) measurement. From comparison of these data, it was confirmed that current distribution and line profile of the patterns from simulation are similar to surface morphology and etching profile of the sample from the process, respectively. Then we concluded that current density is more concentrated at the edge of pattern and the depth of etched area is proportional to current density.

  • PDF

Studies on the Interfacial Reaction between Electroless-Plated UBM (Under Bump Metallurgy) on Cu pads and Pb-Sn-Ag Solder Bumps (Cu pad위에 무전해 도금된 UBM (Under Bump Metallurgy)과 Pb-Sn-Ag 솔더 범프 계면 반응에 관한 연구)

  • Na, Jae-Ung;Baek, Gyeong-Uk
    • Korean Journal of Materials Research
    • /
    • v.10 no.12
    • /
    • pp.853-863
    • /
    • 2000
  • In this study, a new UBM materials system for solder flip chip interconnection of Cu pads were investigated using electroless copper (E-Cu) and electroless nickel (E-Ni) plating method. The interfacial reaction between several UBM structures and Sn-36Pb-2Ag solder and its effect on solder bump joint mechanical reliability were investigated to optimife the UBM materials design for solder bump on Cu pads. Fer the E-Cu UBM, continuous coarse scallop-like $Cu_{6}$ $Sn_{5}$ , intermetallic compound (IMC) was formed at the solder/E-Cu interface, and bump fracture occurred this interface under relative small load. In contrast, Fer the E-Ni/E-Cu UBM, it was observed that E-Ni effectively limited the growth of IMC at the interface, and the Polygonal $Ni_3$$Sn_4$ IMC was formed because of crystallographic mismatch between monoclinic $Ni_3$$Sn_4$ and amorphous E-Ni phase. Consequently, relatively higher bump adhesion strength was observed at E-Ni/E-Cu UBM than E-Cu UBM. As a result, it was fecund that E-Ni/E-Cu UBM material system was a better choice for solder flip chip interconnection on CU PadS.

  • PDF

Oxidation characteristics of solder alloys for the photovoltaic module (태양전지 묘듈용 솔드 합금의 산화 특성)

  • Kim, Hyo Jae;Lee, Young Eun;Lee, Gu;Kang, Gi Hwan;Choi, Byung Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.1
    • /
    • pp.98-104
    • /
    • 2014
  • Photovoltaic (PV) cell is considered as one of the finest ways to utilize the solar power. A study of improving solar cell's efficiency is important because the lifetime of solar cell is determined by photovoltaic module technology. Therefore, oxidation (and/or corrosion) of solder materials will be one of the primary yield and long-term reliability risk factor. Recently, the development of lead-free solder alloy has been done actively about lead-free solder alloys of the thermodynamic and mechanical properties. However, the oxidation behavior have rarely been investigated In this study, the oxidations of 60 wt% Sn-40 wt% Pb, 62 wt% Sn-36 wt% Pb -2 wt% Ag, 50wt% Sn-48 wt% Bi-2 wt% Ag alloys for the interconnect ribbon after exposure in atmosphere at $100^{\circ}C$ for several times were investigated. The wettability of 62 wt% Sn-36 wt% Pb-2 wt% Ag and 50 wt% Sn-48 wt% Bi-2 wt% Ag solders was also studied to compare with that of 60 wt% Sn-40 wt% Pb alloy. The results howed that the zero cross time and the wetting time of 50 wt% Sn-48 wt% Bi-2 wt% Ag solder were better than other two samples. The surface of tested samples was analyzed by XPS. The XPS result showed that in all samples, SnO grew first and then the mixture of SnO and $SnO_2$ was detected. $SnO_2$ grew predominantly for the long time aging. Moreover XPS depth profile analysis has found surface enrichment of tin oxide.

A Study on Side Impact from Car-to-Car using Finite Element Analysis (유한요소해석을 이용한 차대차 측면충돌에 대한 연구)

  • Han, Yuong-Kyu;Baek, Se-Ryong;Yoon, Jun-Kyu;Lim, Jong-Han
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.3
    • /
    • pp.201-209
    • /
    • 2015
  • The deformed degree of car body varies largely with the collision part from side collision of car-to-car. In case of deformation of car body caused by collision, the movement is different as speed energy changes to strain energy. Generally, in the analysis of traffic accident, the movement of car after the collision is analyzed by law of conservation of motion and the error of energy absorption rate along the deformation of car body can be calibrated by inputting coefficient of restitution, but it is current situation that coefficient of restitution applied by referring to the research results of forward collision and backward collision because the research results of side collision is rare. Vehicle model of finite element method applied by structure of car body and materials of each component was analyzed by explicit finite element method, and coefficient of restitution and collision detection time along contact part of side collision was drawn by analyzing the results. Analysis result acquired through the law of conservation momentum by applying finally-computed coefficient of restitution and crash detection time compared to collision result of actual vehicle. As a result, the reliability of analysis was higher than the existing analysis method were acquired when applying the drawn initial input value that used finite element method analysis model.

Advanced Optimization of Reliability Based on Cost Factor and Deploying On-Line Safety Instrumented System Supporting Tool (비용 요소에 근거한 신뢰도 최적화 및 On-Line SIS 지원 도구 연구)

  • Lulu, Addis;Park, Myeongnam;Kim, Hyunseung;Shin, Dongil
    • Journal of the Korean Institute of Gas
    • /
    • v.21 no.2
    • /
    • pp.32-40
    • /
    • 2017
  • Safety Instrumented Systems (SIS) have wide application area. They are of vital importance at process plants to detect the onset of hazardous events, for instance, a release of some hazardous material, and for mitigating their consequences to humans, material assets, and the environment. The integrated safety systems, where electrical, electronic, and/or programmable electronic (E/E/PE) devices interact with mechanical, pneumatic, and hydraulic systems are governed by international safety standards like IEC 61508. IEC 61508 organises its requirements according to a Safety Life Cycle (SLC). Fulfilling these requirements following the SLC can be complex without the aid of SIS supporting tools. This paper presents simple SIS support tool which can greatly help the user to implement the design phase of the safety lifecycle. This tool is modelled in the form of Android application which can be integrated with a Web-based data reading and modifying system. This tool can reduce the computation time spent on the design phase of the SLC and reduce the possible errors which can arise in the process. In addition, this paper presents an optimization approach to SISs based on cost measures. The multi-objective genetic algorithm has been used for the optimization to search for the best combinations of solutions without enumeration of all the solution space.

The effect of Meister high school students' career maturity with respect to the impact on school maladjustment (마이스터고등학교 학생들의 진로성숙도가 학교 부적응에 미치는 영향)

  • Yoo, Jae-Man;Lee, Byung-Wook
    • 대한공업교육학회지
    • /
    • v.41 no.2
    • /
    • pp.1-23
    • /
    • 2016
  • This study was conducted to analyze the effect Meister high school students' career maturity with respect to the impact on school maladjustment. Also, this study clarify the relationship. This study purpose is to permanently provide Meister as the basis for the vocational education sector career education needed to faithfully serve as a special purpose high schools. Tools used for the survey is maladaptive measurement tools developed by Leegyumi (2004) and Career maturity measurement tools developed at Korea Research Institute for Vocational Education and Training (2012). Using these tools, a reliability test was conducted. Meister students' career maturity was conducted correlation analysis and multiple regression analysis to analyze the impact of school maladjustment. Independent variables are consisted of career maturity and independence, attitude toward the job, planning, self-understanding, rational decision-making, information retrieval, knowledge of the desired job, career exploration and ready for action. Meister high school student's career maturity according to the students' background variables are little girls was higher than boys, but it was not statistically significant. T-test was conducted to ascertain the career maturity and school maladjustment differences of adaptation groups and maladaptive group in meister school students in background variables. A career maturity and school maladjustment between adaptive and maladaptive population groups showed a statistically significant difference in background variables.

Reviews of Literature on Dental Plaque Control and Oral Hygiene Education in Korea (치면세균막관리와 구강보건교육에 관한 국내문헌고찰)

  • Choi, Moon-Sil;Kim, Dong-Kie
    • Journal of dental hygiene science
    • /
    • v.17 no.2
    • /
    • pp.87-98
    • /
    • 2017
  • The purpose of this study was to understand the effectiveness of oral health education (OHE) or oral hygiene instruction (OHI) involving professional plaque control/removal, as compared to conventional plaque control/removal. By means of a systematic review of the literature, in the review of literature by using systematic method, Korean articles of plaque control including OHE or OHI, were studied in order to analyze and conclude the literature to enhance oral health. We found that self and professional plaque control/removal, in addition to tooth brushing instructions, decreased incidence and prevalence of loss of teeth. Taken together, professional mechanical plaque removals were most effective 4~5 visits every 1~2 weeks. Use of disclosing agent was more effective than oral education or model education. In line with oral hygiene education, professional brushing, oral prophylaxis, scaling and root planing, it was advisable to repeat the training according to the characteristics of the patient. Routine OHE or OHI would be help to increase to oral health. For a quality of life related oral health, reliability and validity of data are needed to develop and its data should be applied to dental health insurance policy.

Effect of Coolants and Metal Bumps on the heat Removal of Liquid Cooled Microchannel System (액랭식 마이크로채널 시스템 내 냉매와 범프의 열 제거 효과에 대한 연구)

  • Won, Yonghyun;Kim, Sungdong;Kim, Sarah Eunkyung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.2
    • /
    • pp.61-67
    • /
    • 2017
  • As transistor density increases rapidly, a heat flux from IC device rises at fast rate. Thermal issues raised by high heat flux cause IC's performance and reliability problems. To solve these thermal management problems, the conventional cooling methods of IC devices were reached their thermal limit. As a result, alternative cooling methods such as liquid heat pipe, thermoelectric cooler, thermal Si via and etc. are currently emerging. In this paper microchannel liquid cooling system with TSV was investigated. The effects of 2 coolants (DI water and ethylene glycol 70 wt%) and 3 metal bumps (Ag, Cu, Cr/Au/Cu) on cooling performance were studied, and the total heat flux of various coolant and bump cases were compared. Surface temperature of liquid cooling system was measured by infrared microscopy, and liquid flowing through microchannel was observed by fluorescence microscope. In the case of ethylene glycol 70 wt% at $200^{\circ}C$ heating temperature, the total heat flux was $2.42W/cm^2$ and most of total heat flux was from liquid cooling effect.

Effect of Sn Decorated MWCNT Particle on Microstructures and Bonding Strengths of the OSP Surface Finished FR-4 Components Assembled with Sn58%Bi Composite Solder Joints (OSP 표면처리된 FR-4 PCB기판과 Sn58%Bi 복합솔더 접합부의 미세조직 및 접합강도에 미치는 Sn-MWCNT의 영향)

  • Park, Hyun-Joon;Lee, Choong-Jae;Min, Kyung Deuk;Jung, Seung-Boo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.26 no.4
    • /
    • pp.163-169
    • /
    • 2019
  • Sn-Pb solder alloys in electronics rapidly has been replaced to Pb free solder alloys because of various environmental regulations such as restriction of hazardous substances directive (RoHS), European Union waste electrical, waste electrical and electronic equipment (WEEE), registration evaluation authorization and of chemicals (REACH) etc. Because Sn58%Bi (in wt.%) solder alloy has low melting point and higher mechanical properties than that of Sn-Pb solder, it has been studied to manufacture electronic components. However, the reliability of Sn58%Bi solder could be lowered because of the brittleness of Bi element included in the solder alloy. Therefore, we observed the microstructures of Sn58%Bi composite solders with various contents of Sn-decorated multiwalled carbon nanotube (Sn-MWCNT) particles and evaluated bonding strength of the FR-4 components assembled with Sn58%Bi composite solder. Also, microstructures and bonding strengths of the Sn58%Bi composite solder joints were evaluated with the number of reflows from 1 to 7 times, respectively. Bonding strengths and fracture energies of the Sn58%Bi composite solder joints were measured by die shear test. Microstructures and fracture modes were observed with scanning electron microscope (SEM). Microstructures in the Sn58%Bi composite solder joints were finer than that of only Sn58%Bi solder joint. Bonding strength and fracture energy of Sn58%Bi composite solder including 0.1 wt.% of Sn-decorated MWCNT particles increased up to 20.4% and 15.4% at 5 times in reflow, respectively.