• Title/Summary/Keyword: mechanical reliability

Search Result 2,364, Processing Time 0.03 seconds

Simulation of Fuzzy Reliability Indexes

  • Dong, Yu-Ge;Chen, Xin-Zhao;Cho, Hyun-Deog;Kwon, Jong-Wan
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.492-500
    • /
    • 2003
  • By means of the transformation from the problem of fuzzy reliability to the problem of general reliability, a model for analyzing fuzzy reliability is introduced in this paper Because of the complexity of the Problem of the fuzzy reliability, generally speaking, the analytical equations for calculating fuzzy reliability indexes of machine part cannot be obtained in most cases. Therefore, in this paper, an approach is given wherein progressions are employed to calculate them, or a simulation approach is used to estimate them by expressing general reliability indexes as progressions. By utilizing the approach put forwards in the paper, the calculating quantity for analyzing the fuzzy reliability will be reduced : even substantially reduced sometimes. Some examples are taken to explain the feasibility of the model and a simulation approach.

Study on a System Reliability Calculation Method Using Failure Enumeration of Reliability Path (신뢰도 경로의 고장열거를 이용한 시스템 신뢰도 계산방법 연구)

  • Lee, Jang-Il;Park, Kee-Jun;Chun, Hwan-Kyu;Jeong, Choong-Min;Shin, Dong-Jun;Suh, Myung-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.6
    • /
    • pp.629-633
    • /
    • 2011
  • Recently, systems such as aircraft, trains and ships have become larger more complex. Therefore, the reliability calculation of these systems is more difficult. This paper presents a reliability calculation algorithm for a complex system with a solution that is difficult to analyze. When the system has a very complex structure, it is very difficult to find an analytical solution. In this case, we can assess system reliability using the failure enumeration method of the reliability path. In this research, we represent the reliability block diagram by an adjacent matrix and define the reliability path. We can find any system status by the failure enumeration of the reliability path, and thus we can calculate any kind of system reliability through this process. This result can be applied to RCM (Reliability-Centered Maintenance) and reliability information-management systems, in which the system reliability is composed of the reliabilities of individual parts.

ROBUST RELIABILITY DESIGN OF VEHICLE COMPONENTS WITH ARBITRARY DISTRIBUTION PARAMETERS

  • Zhang, Y.;He, X.;Liu, Q.;Wen, B.
    • International Journal of Automotive Technology
    • /
    • v.7 no.7
    • /
    • pp.859-866
    • /
    • 2006
  • This study employed the perturbation method, the Edgeworth series, the reliability optimization, the reliability sensitivity technique and the robust design to present a practical and effective approach for the robust reliability design of vehicle components with arbitrary distribution parameters on the condition of known first four moments of original random variables. The theoretical formulae of the robust reliability design for vehicle components with arbitrary distribution parameters are obtained. The reliability sensitivity is added to the reliability optimization design model and the robust reliability design is described as a multi-objection optimization. On the condition of known first four moments of original random variables, the respective program can be used to obtain the robust reliability design parameters of vehicle components with arbitrary distribution parameters accurately and quickly.

Robust Reliability Analysis of Vibration Components

  • Huang, Hong-Zhong;Li, Yong-Hua;Ming J. Zuo
    • International Journal of Reliability and Applications
    • /
    • v.5 no.2
    • /
    • pp.59-74
    • /
    • 2004
  • There are many uncertain parameters associated with vibration components. Their physical parameters, the machining quality of vibration components, and the applied load acting on them are all uncertain. As a result, the natural frequency and the fatigue limits are also uncertain variables. In this paper, we express these parameters of vibration components and the frequency zone of resonance through interval models; this way, the robust reliability of the vibration components is defined. The robust reliability model measures and assesses the reliability of vibration components. The robust reliability of a cantilever beam is evaluated as an example. The results show that this method is reasonable for robust reliability analysis of vibration components because it does not require a large amount of failure data, it avoids the evaluation of the probability density function, and the computation is simple.

  • PDF

Thermo-Mechanical Reliability of TSV based 3D-IC (TSV 기반 3차원 소자의 열적-기계적 신뢰성)

  • Yoon, Taeshik;Kim, Taek-Soo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.1
    • /
    • pp.35-43
    • /
    • 2017
  • The three-dimensional integrated circuit (3D-IC) is a general trend for the miniaturized and high-performance electronic devices. The through-silicon-via (TSV) is the advanced interconnection method to achieve 3D integration, which uses vertical metal via through silicon substrate. However, the TSV based 3D-IC undergoes severe thermo-mechanical stress due to the CTE (coefficient of thermal expansion) mismatch between via and silicon. The thermo-mechanical stress induces mechanical failure on silicon and silicon-via interface, which reduces the device reliability. In this paper, the thermo-mechanical reliability of TSV based 3D-IC is reviewed in terms of mechanical fracture, heat conduction, and material characteristic. Furthermore, the state of the art via-level and package-level design techniques are introduced to improve the reliability of TSV based 3D-IC.

Probabilistic optimization of nailing system for soil walls in uncertain condition

  • Mitra Jafarbeglou;Farzin Kalantary
    • Geomechanics and Engineering
    • /
    • v.34 no.6
    • /
    • pp.597-609
    • /
    • 2023
  • One of the applicable methods for the stabilization of soil walls is the nailing system which consists of tensile struts. The stability and safety of soil nail wall systems are influenced by the geometrical parameters of the nailing system. Generally, the determination of nailing parameters in order to achieve optimal performance of the nailing system for the safety of soil walls is defined in the framework of optimization problems. Also, according to the various uncertainty in the mechanical parameters of soil structures, it is necessary to evaluate the reliability of the system as a probabilistic problem. In this paper, the optimal design of the nailing system is carried out in deterministic and probabilistic cases using meta-heuristic and reliability-based design optimization methods. The colliding body optimization algorithm and first-order reliability method are used for optimization and reliability analysis problems, respectively. The objective function is defined based on the total cost of nails and safety factors and reliability index are selected as constraints. The mechanical properties of the nailing system are selected as design variables and the mechanical properties of the soil are selected as random variables. The results show that the reliability of the optimally designed soil nail system is very sensitive to uncertainty in soil mechanical parameters. Also, the design results are affected by uncertainties in soil mechanical parameters due to the values of safety factors. Reliability-based design optimization results show that a nailing system can be designed for the expected level of reliability and failure probability.

Korean Novel Concept for the Reliability Certification System (한국적 신뢰성 인증체계 개념)

  • Kim H.E.
    • Journal of Applied Reliability
    • /
    • v.6 no.1
    • /
    • pp.63-91
    • /
    • 2006
  • According to the rapid development of science technologies, a life and development cycle of products are getting shorter and structures and functions become more complex so that the reliability requirement of customers is getting greater for components in the products. However, most domestic mechanical components are manufactured by small and medium-sized companies, who are manufacturing in poor economic and technical condition. Because of this, assessment technologies and equipment to predict and guarantee the reliability are very weak. For this reason, it is the fact that many customers neglect the domestic mechanical components which fail to win the reliability. Korean government has been trying to eliminate the problem by establishing 18 reliability assessment centers in 2000 and performing R-Mark certification promotion and constructions of the foundation for reliability assessment to rebuild the reliability on the domestic components and materials. Korea Institute of Machinery and Materials has been designated as a supervising organization for reliability assessment in the machinery filed for 5 years. In this paper, we would like to introduce effective and systematized 12 steps of reliability substantiation test on mechanical components with know-how we achieved during the period.

  • PDF

Mechanical Reliability(Life-Time) Estimation for 25.8kV Eco Solid Insulated Switchgear (25.8kV급 친환경 고체절연차단기(Solid Insulated Switchgear)에 대한 기계적 신뢰성(수명) 평가)

  • Lee, Do-Hoon;Lee, Seog-Won;Park, Seok-Weon;Kim, Young-Geun;Lee, Jhong-Ho
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.2
    • /
    • pp.202-205
    • /
    • 2010
  • In this paper, mechanical reliability(Life-time) estimation method for 25.8kV SIS(Solid Insulated Switchgear) has been studied. Recently enacted KEPCO's standard includes clause that have to submit a warrantable reliability data for life-time(over B10 25 years) of an epoxy-solid insulating material. Accordingly, this research was carried out on the ALT(Accelerated Life Test) and Life-Estimation method for SIS's insulating material. Mechanical life-time estimation for SIS's insulating material is to verify reliability for tensile creep & fatigue stress, which is the major mechanical stress of SIS. This study proved that SIS's reliability for mechanical stress and established that confidence for estimation results in further verification test.

Design of reliability critical system using axiomatic design with FMECA

  • Goo, Bongeun;Lee, Joohee;Seo, Suwon;Chang, Daejun;Chung, Hyun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.11-21
    • /
    • 2019
  • In product design, the initial design stage is being increasingly emphasized because it significantly influences the successive product development and production stages. However, for larger and more complex products, it is very difficult to accurately predict product reliability in the initial design stage. Various design methodologies have been proposed to resolve this issue, but maintaining reliability while exploring design alternatives is yet to be achieved. Therefore, this paper proposes a methodology for conceptual design considering reliability issues that may arise in the successive detailed design stages. The methodology integrates the independency of axiomatic design and the hierarchical structure of failure mode, effects, and criticality analysis (FMECA), which is a technique widely used to analyze product reliability. We applied the proposed methodology to a liquefied natural gas fuel gas supply system to verify its effectiveness in the reliability improvement of the design process.

Reliability Properties of Carbon Nanotube-filled Solderable Anisotropic Conductive Adhesives (탄소 나노튜브 함유 Solderable 이방성 도전성 접착제의 신뢰성 특성에 관한 연구)

  • Yim, Byung-Seung;Lee, Jeong Il;Kim, Jong-Min
    • Journal of Welding and Joining
    • /
    • v.35 no.3
    • /
    • pp.15-20
    • /
    • 2017
  • In this paper, two types of assemblies using CNT-filled SACAs (with 0.03 wt% CNTs and without CNT) were prepared to investigate the influence of carbon nanotubes (CNTs) on the reliability properties of solderable anisotropic conductive adhesives (SACAs) with a low-melting-point alloy (LMPA). Two types of reliability test including thermal shock (TS: -55 to $125^{\circ}C$, 1000 cycles) and high-temperature and high-humidity (HTHH: $85^{\circ}C$, 85% RH, 1000 h) tests were conducted. The SACA assemblies with and without CNTs showed stable electrical reliability properties due to the formation of wide and stable metallurgical interconnection between corresponding metallizations by the molten LMPA fillers. Although the mechanical pull strength of CNT-filled SACA assemblies was decreased after thermal aging (because of the excessive layer growth and planarization of the IMCs), the CNT-filled SACA with 0.03wt% CNTs showed enhanced mechanical reliability properties compared with the SACA assemblies no CNTs. This enhancement in mechanical performance was due to the reinforcement effect of the CNTs. These results demonstrate that CNTs within the CNT-filled SACAs can improve the reliability properties of CNT-filled SACAs joints due to their superior physical properties.