• Title/Summary/Keyword: mechanical property at the elevated temperature

Search Result 32, Processing Time 0.025 seconds

The Experimental Study to Evaluate the Mechanical Properties for 35MPa Concrete at Elevated Temperature (35MPa급 콘크리트의 온도별 물리적 특성에 관한 실험적 연구)

  • Kim, Dae-Hoi
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.11a
    • /
    • pp.9-10
    • /
    • 2017
  • For the structural analysis of reinforced concrete structures, the mechanical properties of concrete at each temperature are required and the mechanical property values according to specific temperature are presented in the design regulations and codes. In this study, the mechanical properties of concrete were experimented by using 35MPa concrete produced in Korea from 20℃ to 900℃(two kinds of test method). Compared the results with previous domestic papers, we aimed to contribute to the construction of mechanical characteristics D.B. of at the elevated temperatures of domestically produced concrete which can be used for structural analysis in fire.

  • PDF

A Study on the Improvement of Fatigue Strength in Particulate Reinforced Metal Matrix Composites at Elevated Temperatures (입자강화 금속기 복합재료의 고온 피로강도 향상에 관한 연구)

  • Sin, Hyeong-Seop
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.5 s.176
    • /
    • pp.1146-1154
    • /
    • 2000
  • Fatigue strength of NiAl and Ni$_3$Al particulate reinforced aluminum alloy composites fabricated by the diecasting method was examined at room and elevated temperatures. The results were compared wit h that of SiC particulate reinforced one. The particulate reinforced composites showed some improvement in the static and fatigue strength at elevated temperatures when compared with that of Al alloy. The composites reinforced by intermetallic compound particles showed good fatigue strengths at elevated temperatures especially $Ni_3AI_{p}/Al$ alloy composite showed good fatigue limit up to high temperature of 30$0^{\circ}C$. Adopting intermetallic compound particle as a reinforcement phase, it will be possible to develop MMC representing better fatigue property at elevated temperature.

Analysis of Notched Bar Tensile Tests for Inconel 617 at Room and Elevated Temperatures (Inconel 617 노치시편의 상온 및 고온 인장실험 해석)

  • Oh, Chang-Sik;Ma, Young-Wha;Yoon, Kee-Bong;Kim, Yun-Jae
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1818-1823
    • /
    • 2007
  • In this paper, notched bar tensile tests of Inconel 617 were performed at room ($20^{\circ}C$) and elevated ($800^{\circ}C$) temperature. Finite element analyses are also performed. It is found that, at the room temperature, smooth bar tensile test results could be used to simulate notched bar tensile tests. However, at the elevated temperature, notched bar tensile test results can not be simulated from smooth bar tensile test results. Metallurgical examination reveals that strength weakening results from many cavities over the specimens for smooth bar test at the elevated temperature. "True" tensile properties at the elevated temperature is found using FE simulations. It also suggests that cautious should be taken to determine tensile properties of Inconel 617 at elevated temperatures using smooth bar tests.

  • PDF

The Effect of Y Addition on the Microstructure and Mechanical Property of Rapidly Solidified AZ91 Alloy (급속응고한 AZ91합금의 미세조직 및 기계적 특성에 미치는 Y첨가의 영향)

  • Choi, Jae-Young;Park, Hoon-Mo;Nam, Tae-Woon
    • Journal of Korea Foundry Society
    • /
    • v.20 no.6
    • /
    • pp.386-394
    • /
    • 2000
  • In the present study, the effect of yttrium addition on the microstructure and mechanical property of rapidly solidified AZ91 alloy by melt spinning process is estimated. As yttrium was added, the microstructure of RS ribbons and extrudates became finer than those of AZ91, and RE related phases $(Al_2RE)$ were formed. In the case of the addition of 3wt%Y, the microstructure of extrude showed the finest grain size. At room temperature, the AZ91 + 3wt%Y alloy showed the highest tensile strength, 352 MPA due to precipitation of ${\beta}(Mg_{17}Al_{12})$ phase and $Al_2RE$ phase. At the elevated temperature, the mechanical property of AZ91 + 3wt%Y alloy was higher than those of other Mg alloys. The reasons were that $Al_2Y$ compound was thermally stable and suppressed the grain growth. In contrast with $Al_2Y$ compounds, ${\beta}$ phase was thermally unstable and could not suppress the grain growth at the elevated temperature. Therefore, $Al_2Y$ phase contributed to improve the thermal stability of RS AZ91 alloy.

  • PDF

The Effect of Misch Metal Addition on the Microstructure and Mechanical Property of Rapidly Solidified AZ91 Alloy (급속응고한 AZ91 합금의 미세조직 및 기계적 특성에 미치는 Misch metal 첨가의 영향)

  • Eum, Seung-Yeul;Park, Hoon-Mo;Nam, Tae-Woon
    • Journal of Korea Foundry Society
    • /
    • v.20 no.1
    • /
    • pp.29-37
    • /
    • 2000
  • The purpose of this study is to investigate the effect of misch metal addition on the microstructure and mechanical property of rapidly solidified AZ91 alloy by melt spinning process. As the contents of misch metal(rare earth element:Ce,La, Nd, Pr)was increased, the microstructure of RS ribbons and extrudates became finer than those of AZ91, and RE related phases($Al_{11}RE_3$, $Al_2RE$) were formed. At room temperature, the rapidly solidified AZ91+1 wt%Mm alloy showed the highest tensile strength, 430 MPa due to precipitation strengthening of${\beta}(Mg_{17}Al_{12})$ phase and Al11RE3 phase. At the elevated temperature, the mechanical property of AZ01+3 wt%Mm alloy was higher than those of other Mg alloys. The reasons were that $Al_{11}La_3$ phase was thermally stable and suppressed the grain growth. In contrast with $Al_{11}La_3$ phase, ${\beta}$ phase was thermally unstable and could not suppress the grain growth at the elevated temperature. Therefore, Al11RE3 phase contributed to improve the thermal stability of RS AZ91 Alloy.

  • PDF

Characteristics of Hot Forming of Magnesium Alloys for Light-weight Valves (경량 밸브 제조용 마그네슘 합금의 고온 성형 특성)

  • Park, Joon-Hong;Lee, Joon-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.4
    • /
    • pp.173-179
    • /
    • 2012
  • In recent years, Magnesium(Mg) and its alloys have become a center of special interest in the automotive industry. Due to their high specific mechanical properties, they offer a significant weight saving potential in modern vehicle constructions. Most Mg alloys show very good machinability and processability, and even the most complicated die casting parts can be easily produced. In this study, Microstructure, Vickers hardness and tensile tests were examined and performed for each specimen to verify effects of forming conditions. Also to verify upsettability and forming limit of the specimen at room temperature and elevated temperature, upsetting experiments were performed. For comparison, experiments at elevated temperature were performed for various Mg alloy, such as AZ31, AZ91, and AM50. The experimental results were compared with those of CAE analysis to propose forming limit of Magnesium alloys.

Microstructure and Mechanical Properties of Rapidly Solidified Powder Metallurgy Al-Fe-V-Si-X Alloys

  • Genkawa, Takuya;Yamasaki, Michiaki;Kawamura, Yoshihito
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1041-1042
    • /
    • 2006
  • High heat-resistant Al-Fe-V-Si and Al-Fe-V-Si-X rapidly solidified powder metallurgy (RS P/M) alloys have been developed under well-controlled high purity argon gas atmosphere. The $Al_{90.49}Fe_{6.45}V_{0.68}Si_{2.38}$ (at. %) RS P/M alloy exhibited high elevated-temperature strength exceeding 300 MPa and good ductility with elongation of 6 % at 573 K. Reduction of $H_2O$ partical pressure in P/M processing atmosphere led to improvement in mechanical properties of the powder-consolidated alloys under elevated-temperature service conditions. Ti addition to the Al-Fe-V-Si conduced to enhancement of the strength at room temperature. The tensile yeild strength and ultimate strenght were 545 MPa and 722 MPa, respectively.

  • PDF

Structural stability of fire-resistant steel (FR490) H-section columns at elevated temperatures

  • Kwon, In-Kyu;Kwon, Young-Bong
    • Steel and Composite Structures
    • /
    • v.17 no.1
    • /
    • pp.105-121
    • /
    • 2014
  • A fundamental limitation of steel structures is the decrease in their load-bearing capacity at high temperatures in fire situations such that structural members may require some additional treatment for fire resistance. In this regard, this paper evaluates the structural stability of fire-resistant steel, introduced in the late 1999s, through tensile coupon tests and proposes some experimental equations for the yield stress, the elastic modulus, and specific heat. The surface temperature, deflection, and maximum stress of fire-resistant steel H-section columns were calculated using their own mechanical and thermal properties. According to a comparison of mechanical properties between fire-resistant steel and Eurocode 3, the former outperformed the latter, and based on a comparison of structural performance between fire-resistant steel and ordinary structural steel of equivalent mechanical properties at room temperature, the former had greater structural stability than the latter through $900^{\circ}C$.

A Study on the High Temperature Tensile Property and the Characteristics of Residual Stress in Welds of High Strength Steels (고강도강재의 고온인장특성 및 용접시 잔류응력특징에 관한 연구)

  • 장경호;이진형;신영의
    • Journal of Welding and Joining
    • /
    • v.22 no.4
    • /
    • pp.50-58
    • /
    • 2004
  • In this study, high temperature tensile properties of high strength steels(POSTEN60, POSTEN80) were investigated. The three-dimensional thermal elastic-plastic analyses were conducted to investigate the characteristics of welding residual stresses in welds of high strength steels on the basis of thermal and mechanical properites at high temperature obtained from the experiment. According to the results, high temperature tensile strength of POSTEN60 steel deteriorated slowly to 10$0^{\circ}C$. As the temperature went up, the tensile strength became better because of blue shortness, and it deteriorated radically after reaching to the maximum value around 30$0^{\circ}C$. For the POSTEN80 steel, high temperature tensile strength deteriorated slowly to 20$0^{\circ}C$. As the temperature went up the tensile strength became better and it deteriorated slowly to $600^{\circ}C$ after reached to the maximum value around 30$0^{\circ}C$. Strain of high strength steels at the elevated temperature increased radically after the mercury rose to $600^{\circ}C$. The strain hardening ratio of POSTEN60 steel was larger then that of POSTEN80 steel at the elevated temperature as in the case at the room temperature and it became smaller radically after the mercury rose to 40$0^{\circ}C$. And, in the welding of high strength steels, increasing tensile strength of the steel (POSTEN60

Effect of Bonding Condition on High Temperature Mechanical Properties of TLP Bonded Joints of FE-35Ni-26Cr Alloy (Fe-35Ni-26Cr 주강 액상확산접합부의 고온기계적 특성에 미치는 접합조건의 영향)

  • 김대업
    • Journal of Welding and Joining
    • /
    • v.18 no.4
    • /
    • pp.96-103
    • /
    • 2000
  • This study investigated the effects of bonding temperature and bonding atmosphere on high temperature mechanical properties of transient liquid phase(TLP) bonded joints of heat resistant alloy using MBF-50 insert metal. Specimens were bonded at 1,423~1,468K for 600s. Microconstituents of {TEX}$Cr_{7}(C,B)_{3}${/TEX}were formed in the bonded region when the bonding temperature was low. The amount of microcostituents in the bonded layer decreased with increasing the bonding temperature, and the microconstituents in the bonded layer disappeared at the bonding temperature above 1,468K. The tensile strength of the joints at elevated temperatures increased with the increase the bonding temperature and was the same level as one of the base metal in the bonding temperature over 1,453K. Microstructure and alloying element distributions of the bonded region bonded in Ar and $N_2$atmosphere were similar to those of the bonded in vacuum. The creep rupture strength and rupture lives of joints were almost identical to those of base metal.

  • PDF